Skip to main content
Log in

Improving Skills and Perception in Robot Navigation by an Augmented Virtuality Assistance System

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Successful navigation in a teleoperation scenario requires a good level of situational or environmental awareness. This paper presents the main features and capabilities of a new augmented virtuality-based system aimed at providing users with improved perception of the robot’s remote environment. With this purpose, a mixed-perspective exocentric display (ME3D), and a video centric display (VC2D) are compared. Both interfaces were implemented on a mobile robot and experiments were performed in a real working scenario. To assess this contribution, this works analyzes the teleoperation capability, performance, and human workload of users by means of NASA-TLX (Task Load Index). The results show that participants experienced a reduction in the driving workload and showed high degrees of acceptance for the proposed ME3D interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson, J.J.: Perceiving, Acting, and Knowing: Toward an Ecological Psychology, pp. 67–82. Lawrence Erlbaum, Hillsdale (1977)

    Google Scholar 

  2. Mateo Sanguino, T.J., Andújar Márquez, J.M., Carlson, T., Millán, J.d.R.: Interaction and evaluation of an augmented virtuality assistance system for teleoperated robots. In: IEEE Intern. Symposium on Robotic and Sensors Environments (ROSE), Magdeburg (Germany), pp. 19–24 (2012)

  3. Hart, S., Staveland, L.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock, P., Meshkati, N. (eds.) Human Mental Workload. North-Holland, pp. 139–83 (1988)

  4. Carlson, T., Demiris, Y.: Collaborative control for a robotic wheelchair: evaluation of performance, attention and workload. IEEE Trans. Syst Man Cybern. 42(3), 876–888 (2012)

    Article  Google Scholar 

  5. Tonin, L., Leeb, R., Tavella, M., Perdikis, S., Millán, J.d.R.: The role of shared-control in BCI-based telepresence. IEEE Conf. Syst. Man Cybern, 1462–1466 (2010)

  6. Boessenkool, H., Abbink, D.A., Heemskerk, C.J.M., van der Helm, F.C.T.: Haptic shared control improves tele-operated task performance towards performance in direct control. In: IEEE World Haptics Conference, pp. 433–438 (2011)

  7. Chen, I.Y., MacDonald, B., Wunsche, B.: Mixed reality simulation for mobile robots. In: IEEE International Conference Robotics and Automation (ICRA), pp. 232–237 (2009)

  8. Nielsen, C.W.: Using Augmented Virtuality to Improve Human-Robot Interactions. Ph.D., Brigham Young University (2006)

  9. Milgram, P., Rastogi, A., Grodski, J.: Telerobotic control using augmented reality. In: 4th IEEE International Workshop on Robot and Human Communication, pp. 21–29 (1995)

  10. Salzmann, Ch., Gillet, D., Huguenin, P.: Introduction to real-time control using LabVIEW™ with an application to distance learning. Int. J. Eng. Educ. 16(3), 255–272 (2000)

    Google Scholar 

  11. Andújar, J.M., Mejias, A., Márquez, M.A.: Augmented reality for the improvement of remote laboratories: an augmented remote laboratory. IEEE Trans. Educ. 54(3), 492–500 (2011)

    Article  Google Scholar 

  12. Perrin, X., Chavarriaga, R., Colas, F., et al.: Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Robot. Auton. Syst. 58, 1246–1255 (2010)

    Article  Google Scholar 

  13. Carff, J., Johnson, M., El-Sheikh, E.M., Pratt, J.E.: Human-robot team navigation in visually complex environments. In: IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), pp. 3043–3050 (2009)

  14. Amstutz, P., Fagg, A.: Real time visualization of robot state with mobile virtual reality. IEEE Int. Conf. Robotics Autom. (ICRA) 1, 241–247 (2002)

    Google Scholar 

  15. Stoker, C., Zbinden, E., Blackmon, T., et al.: Analyzing pathfinder data using virtual reality and superresolved imaging. J. Geophys. Res. 104(E4), 8889–8906 (1999)

    Article  Google Scholar 

  16. Livatino, S., Muscato, G., Sessa, S., et al.: Depth-enhanced mobile robot teleguide based on laser images. Mechatronics 20, 739–750 (2010)

    Article  Google Scholar 

  17. Regenbrecht, H., Ott, C., Wagner, M., Lum, T., Kohler, P., Wilke, W., Mueller, E.: An augmented virtuality approach to 3D videoconferencing. In: 2nd IEEE and ACM International Sympposium Mixed and Augmented Reality, pp. 290–291 (2003)

  18. Varadarajan, K.M., Vincze, M.: Augmented virtuality based immersive telepresence for control of mining robots. In: 5th International Symposium Computational Intelligence and Intelligent Informatics (ISCIII), pp. 133–138 (2011)

  19. Pacis, E.B., Everett, H.R., Farrington, N., Kogut’a, G., Sights, B., Kramera, T.: Transitioning unmanned ground vehicle research technologies. Unmanned Ground Veh. Tech. VII, 29–31 (2005)

  20. Nielsen, C.W., Goodrich, M.A., Ricks, R.W.: Ecological interfaces for improving mobile robot teleoperation. IEEE Trans. Robotics 23(5), 927–941 (2007)

    Article  Google Scholar 

  21. Michaud, F., Boissy, P., Labonté, D., et al.: Exploratory design and evaluation of a homecare teleassistive mobile robotic system. Mechatronics 20, 751–766 (2010)

    Article  Google Scholar 

  22. Vicente, K.J., Rasmussen, J.: Ecological interface design: theoretical foundations. IEEE Trans. Syst. Man Cybern. 22, 589–606 (1992)

    Article  Google Scholar 

  23. Chen, J.Y.C., Oden, R.V.N., Drexler, J.M.: Evaluation of stereoscopic displays for indirect-vision driving and robot teleoperation. In: 27th Army Science Conference (2010)

  24. Gomer, J.A., Pagano, C.C.: NASA task load index for human-robot interaction workload measurement. ITEA J. 32, 210–214 (2011)

    Google Scholar 

  25. Chen, J.Y.C., Haas, E.C., Barnes, M.J.: Human performance issues and user interface design for teleoperated robots. IEEE Trans. Syst. Man Cybern. 37(6), 1231–1245 (2007)

    Article  Google Scholar 

  26. Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: theory and applications for autonomous robot architectures. Robot. Auton. Syst. 16, 213–245 (1995)

    Article  Google Scholar 

  27. Chellali, R., Baizid, K.: What maps and what displays for remote situation awareness and ROV localization?. In: Lecture Notes in Computer Science, 6772 LNCS (PART 2), pp. 364–372 (2011)

  28. Creem-Regehr, S.H., Willemsen, P., Gooch, A.A., Thompson, W.B.: The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual environments. Perception 34(2), 191–204 (2005)

    Article  Google Scholar 

  29. Yanco, H.A., Drury, J.L.: Where am I? Acquiring situation awareness using a remote robot platform. IEEE Conf. Syst. Man Cybern. 3, 2835–2840 (2004)

    Google Scholar 

  30. GStreamer: Open Source Multimedia Framework. Available: http://gstreamer.freedesktop.org/

  31. Norman, D.: The design of everyday things. Doubleday Business (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Mateo Sanguino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 90.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanguino, T.M., Márquez, J.A., Carlson, T. et al. Improving Skills and Perception in Robot Navigation by an Augmented Virtuality Assistance System. J Intell Robot Syst 76, 255–266 (2014). https://doi.org/10.1007/s10846-014-0038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0038-5

Keywords

Navigation