Skip to main content
Log in

A Non-Time Based Controller for Load Swing Damping and Path-Tracking in Robotic Cranes

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes the use of the non-time based control strategy named Delayed Reference Control (DRC) to the control of industrial robotic cranes. Such a control scheme has been developed to achieve two relevant objectives in the control of autonomous operated cranes: the active damping of undesired load swing, and the accurate tracking of the planned path through space, with the preservation of the coordinated Cartesian motion of the crane. A paramount advantage of the proposed scheme over traditional ones is its ease of implementation on industrial devices: it can be implemented by just adding an outer control loop (incorporating path planning) to standard position controllers. Experimental performance assessment of the proposed control strategy is provided by applying the DRC to the control of the oscillation of a cable-suspended load moved by a parallel robot mimicking a robotic crane. In order to implement the DRC scheme on such an industrial robot it has been just necessary to manage path planning and the DRC algorithm on a separate real-time hardware computing the delay in the execution of the desired trajectory suitable to reduce load swing. Load swing has been detected by processing the images from two off-the-shelf cameras with a dedicated vision system. No customization of the robot industrial controller has been necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martínez-Salvador, B., Pérez-Francisco, M., Del Pobil, A.P.: Collision detection between robot arms and people. J. Intell. Robot. Syst. 38, 105–119 (2003)

    Article  Google Scholar 

  2. Lew, J.Y., Khalil, A.: Anti-swing control of a suspended load with a robotic crane. In: Proceedings of the ACC, pp. 1042–1046, Chicago, USA (2000)

  3. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Contr. 9(7), 863–909 (2003)

    Article  MATH  Google Scholar 

  4. Blackburn, D., Lawrence, J., Danielson, J., Singhose, W., Kamoi, T., Taura, A.: Radial-motion assisted command shapers for nonlinear tower crane rotational slewing. Control. Eng. Pract. 18, 523–531 (2010)

    Article  Google Scholar 

  5. Vaughan, J., Kim, D., Singhose, W.: Control of tower cranes with double-pendulum dynamics. IEEE Trans. Contr. Syst. Technol. 18(6), 1345–1358 (2010)

    Google Scholar 

  6. Singer, N.C., Seering, W.P.: Preshaping command inputs to reduce system vibration. J. Dyn. Syst. Meas. Contr. 112(1), 76–82 (1990)

    Article  Google Scholar 

  7. Bowling, D., Starr, G., Wood, J., Lumia, R.: Wide band suppression of motion-induced vibration. In: Proceedings of the IEEE International Conference on Robotics and Automation. Rome (2007)

  8. Hong, K.-S., Ngo, Q.H.: Port automation: modeling and control of container cranes. In: Proceedings of International Conference on Instrumentation, Control & Automation. Bandung (2009)

  9. Kim, C.-S., Hong, K.-S.: Boundary control of container cranes from the percpective of controlling an axially moving string system. Int. J. Contr. Autom. Syst. 7(3), 437–445 (2009)

    Article  Google Scholar 

  10. Klosinski, J.: Swing-free stop control of the slewing motion of a mobile crane. Contr. Eng. Pract. 13, 451–460 (2005)

    Article  Google Scholar 

  11. Hong, S.-W., Bae, G.-H., Kim, B.-G.: Development of miniature tower crane and payload position tracking system using web-cam for education. In: Proceedings of IASTED International Conference on Robotics and Applications. Cambridge (2010)

  12. Yang, J.H., Shen, S.H.: Novel approach for adaptive tracking control of a 3-D overhead crane system. J. Intell. Robot. Syst. 62, 59–80 (2011)

    Article  MATH  Google Scholar 

  13. O’Connor, W.J.: A gantry crane problem solved. ASME. J. Dyn. Syst. Meas. Contr. 125(4), 569–576 (2003)

    Article  Google Scholar 

  14. Boschetti, G., Richiedei, D., Trevisani, A.: Delayed reference control for multi-degree-of-freedom elastic systems: theory and experimentation. Contr. Eng. Pract. 19, 1044–1055 (2011)

    Article  Google Scholar 

  15. Schaub, H.: Rate-based ship-mounted crane payload pendulation control system. Contr. Eng. Pract. 16, 132–145 (2008)

    Article  Google Scholar 

  16. Sorensen, K.L., Singhose, W., Dickerson, S.: A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Contr. Eng. Pract. 15, 825–837 (2007)

    Article  Google Scholar 

  17. Gallina, P., Trevisani, A.: Delayed reference control of a two mass elastic system. J. Vib. Contr. 10, 135–159 (2004)

    Article  MATH  Google Scholar 

  18. Gallina, P., Trevisani, A.: Synthesis and experimental validation of a delayed reference controller for active vibration suppression in mechanical systems. J. Appl. Mech.-T. ASME 72, 623–627 (2005)

    Article  MATH  Google Scholar 

  19. Richiedei, D., Trevisani, A.: Design of delayed reference controllers for simultaneous path tracking and active vibration damping of multi-degree-of-freedom linear systems. J. Vib. Contr. 15(3), 323–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Caracciolo, R., Boschetti, G., Richiedei, D., Trevisani, A.: Moving the suspended load of an overhead crane along a pre-specified path: a non-time based approach. Robot. Comput. Integrat. Manuf. 30(3), 256–264 (2014)

    Google Scholar 

  21. Boschetti, G., Richiedei, D., Trevisani, A.: Delayed reference control applied to flexible link mechanisms: a scheme for effective and stable control. J. Dyn. Syst. Meas. Control-T. ASME 134(1), 011003.1–011003.9 (2012)

    Google Scholar 

  22. Richiedei, D.: Synchronous motion control of dual-cylinder electrohydraulic actuators through a non-time based scheme. J. Contr. Eng. Appl. Informat. 14(4), 80–89 (2012)

    Google Scholar 

  23. Yoshida, Y., Tabata, H.: Visual feedback control of an overhead crane and its combination with time-optimal control. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Xi’an (2008)

  24. Pierrot, F., Nabat, V., Company, O., Krut, S., Poignet, F.: Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Trans. Robot. 25(2), 213–24 (2009)

    Article  Google Scholar 

  25. Boschetti, G., Rosa, R., Trevisani, A.: Optimal robot positioning using task-dependent and direction-selective performance indexes: general definitions and application to a parallel robot. Robot. Comput. Integrat. Manuf. 29(2), 431–443 (2013)

    Article  Google Scholar 

  26. Ebrahimi, M., Ghayour, M., Madani, S.M., Khoobroo, A.: Swing angle estimation for anti-sway overhead crane control using load cell. Int. J. Contr. Automat. Syst. 9(2), 301–309 (2011)

    Article  Google Scholar 

  27. Kim, Y.S., Hong, K.S., Sul, S.K.: Anti-sway control of container cranes: inclinometer, observer, and state feedback. Int. J. Contr. Automat. Syst. 2(4), 435–449 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trevisani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 1.60 KB)

(MPG 1.42 MB)

(MPG 5.38 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boschetti, G., Caracciolo, R., Richiedei, D. et al. A Non-Time Based Controller for Load Swing Damping and Path-Tracking in Robotic Cranes. J Intell Robot Syst 76, 201–217 (2014). https://doi.org/10.1007/s10846-014-0036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0036-7

Keywords

Navigation