Skip to main content

Advertisement

Log in

Energy-Efficient Trajectory Generation for Space Manipulators with Reaction Wheels under a Fixed Base Orientation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We have developed an Energy-Efficient Trajectory Generation Algorithm for space manipulators with reaction wheels under the constraint of fixed base orientation. By defining the manipulator joint trajectories as B-splines and imposing a constraint that the reaction wheel should precisely compensate for the rotational disturbance caused by the manipulator motion, we reformulate an optimal control problem as a constrained parameter optimization problem where the cost function is defined as the total energy consumption of the motors. To address the problem with the direct method, we derive a novel analytic gradient computation algorithm which recursively computes the torque sensitivity and determines the reaction wheel motion by solving the momentum conservation constraint. The complexity of the gradient computation is O(n 2 N I ) where n is the number of bodies and N I is the number of integration points. We show the effectiveness of the suggested method by two examples of trajectory optimization. In the first case, we verify the optimality of the solution trajectory using the planar space manipulator model with a two-joint arm and a reaction wheel. In the second case, we optimize the target berthing motion of the spatial space manipulator model with a seven-joint arm and three reaction wheels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P., Xu, Y.: On the global optimum path planning for redundant space manipulators. IEEE Trans. Syst. Man Cybern. 24(9), 1306–1316 (1994)

    Article  Google Scholar 

  2. Bergin, C.: NASA ready for Japans HTV via flight readiness review. http://www.nasaspaceflight.com/2009/08/nasa-ready-for-japans-htv-via-flight-readiness-review/ (2009)

  3. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  4. Bobrow, J.E., Martin, B., Sohl, G., Wang, E.C., Park, F.C., Kim, J.: Optimal robot motions for physical criteria. J. Robot. Syst. 18(12), 785–795 (2001)

    Article  MATH  Google Scholar 

  5. Boeing. http://www.boeing.com/boeing/defense-space/space/spacestation/systems/guidance_navagation_control.page

  6. Dimitrov, D., Yoshida, K.: Utilization of holonomic distribution control for reactionless path planning. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3387–3392. Beijing (2006)

  7. Dubowsky, S., Torres, M.A.: Path planning for space manipulators to minimize spacecraft attitude disturbance. In: 1991 IEEE International Conference on Robotics and Automation, pp. 2522–2528. Sacramento (1991)

  8. Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. J. Guid. Control Dyn. 24(2), 270–277 (2001)

    Article  Google Scholar 

  9. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. In: ACM SIGGRAPH 2003 Papers on - SIGGRAPH ’03, pp. 417–426 (2003)

  10. Featherstone, R.: Rigid Body Dynamics Algorithm. Springer,New York (2008)

  11. Featherstone, R.: A beginner’s guide to 6-D vectors (part 1). IEEE Robot. Automat. Mag. 17(3), 83–94 (2010)

    Article  Google Scholar 

  12. Featherstone, R.: A beginner’s guide to 6-D vectors (part 2). IEEE Robot. Automat. Mag. 17(4), 88–99 (2010)

    Article  Google Scholar 

  13. Ford, K.A., Hall, C.D.: Singular direction avoidance steering for control-moment gyros. J. Guid. Control Dyn. 23(4), 648–656 (2000)

    Article  Google Scholar 

  14. Franch, J., Agrawal, S.K., Oh, S., Fattah, A.: Design of differentially flat planar space robots: a step forward in their planning and control. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3053–3058. Las Vegas (2003)

  15. Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41(3), 307–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirk, E.: Optimal Control Theory: An Introduction. Dover Publication Inc., New York, reprinted edition (2004)

    Google Scholar 

  17. Leahy, M.B. Jr., Saridis, G.N.: Compensation of industrial manipulator dynamics. Int. J. Robot. Res. 8(4), 73–84 (1989)

    Article  Google Scholar 

  18. Lee, S.H., Park, F., Bobrow, J.: Newton-type algorithms for dynamics-based robot movement optimization. IEEE Trans. Robot. 21(4), 657–667 (2005)

    Article  Google Scholar 

  19. Li, C.: An efficient method for linearization of dynamic models of robot manipulators. IEEE Trans. Robot. Automat. 5(4), 397–408 (1989)

    Article  Google Scholar 

  20. Martin, B.J., Bobrow, J.E.: Minimum-effort motions for open-chain manipulators with task-dependent end-effector constraints. Int. J. Robot. Res. 18(2), 213–224 (1999)

    Article  Google Scholar 

  21. Maxon Motor: http://www.maxonmotor.com/maxon/view/catalog/

  22. Nakamura, Y., Mukherjee, R.: Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans. Robot. Automat. 7(4), 500–514 (1991)

    Article  Google Scholar 

  23. Nguyen, P., Hughes, P.: Teleoperation from the space shuttle to the space station. In: Skaar, S., Ruoff, C. (eds.) Teleoperation and Robotics in Space, chap. 14, pp. 350–410. AIAA (1994)

  24. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  25. Nokleby, S.B.: Singularity analysis of the Canadarm2. Mech. Mach. Theory 42(4), 424–454 (2007)

    Article  Google Scholar 

  26. Oda, M.: Experiences and lessons learned from the ETS-VII robot satellite. In: 2000 IEEE International Conference on Robotics & Automation, pp. 914–919. San Francisco (2000)

  27. Oda, M., Ohkami, Y.: Coordinated control of spacecraft attitude and space manipulators. Control Eng. Pract. 5(1), 11–21 (1997)

    Article  Google Scholar 

  28. Oki, T., Nakanishi, H., Yoshida, K.: Time-optimal manipulator control for management of angular momentum distribution during the capture of a tumbling target. Adv. Robot. 24(3), 441–466 (2010)

    Article  Google Scholar 

  29. Papadopoulos, E., Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Automat. 7(6), 750–758 (1991)

    Article  Google Scholar 

  30. Papadopoulos, E., Fragkos, I., Tortopis, I.: On robot gymnastics planning with non-zero angular momentum. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1443–1448. Rome (2007)

  31. Rekleitis, I., Martin, E., Rouleau, G., L’Archevêque, R., Parsa, K., Dupuis, E.: Autonomous capture of a tumbling satellite. J. Field Robot. 24(4), 275–296 (2007)

    Article  Google Scholar 

  32. Sohl, G.A., Bobrow, J.E.: A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains. J. Dyn. Syst. Meas. Control. 123(3), 391–399 (2001)

    Article  Google Scholar 

  33. The Mathworks Inc.: MATLAB Optimization Toolbox Documentation. http://mathworks.com/help/toolbox/optim/ug/fmincon.html

  34. Tortopidis, I., Papadopoulos, E.: On point-to-point motion planning for underactuated space manipulator systems. Robot. Auton. Syst. 55(2), 122–131 (2007)

    Article  Google Scholar 

  35. Wolfram Research Inc.: http://www.wolfram.com/mathematica/

  36. Xu, W., Liu, Y., Liang, B., Wang, X., Xu, Y.: Unified multi-domain modelling and simulation of space robot for capturing a moving target. Multibody Syst. Dyn. 23(3), 293–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, W., Liu, Y., Xu. Y.: The coordinated motion planning of a dual-arm space robot for target capturing. Robotica 30(5), 755–771 (2012)

    Article  Google Scholar 

  38. Yoshida, K.: Achievements in space robotics. IEEE Robot. Automat. Mag. 16(4), 20–28 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Min Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.M., Kim, B.K. Energy-Efficient Trajectory Generation for Space Manipulators with Reaction Wheels under a Fixed Base Orientation. J Intell Robot Syst 76, 219–237 (2014). https://doi.org/10.1007/s10846-014-0034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0034-9

Keywords

Mathematics Subject Classifications (2010)

Navigation