Skip to main content
Log in

Adaptive Neural Network Control of Small Unmanned Aerial Rotorcraft

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes an online learning adaptive neural network for small unmanned aerial rotorcraft to improve control performance during flight. Based on state error information, the weight matrix of the adaptive neural network can be updated on line by using lyapunov function. Therefore, no prior training data is needed for the training of the adaptive neural network. Combined with feedback control, the adaptive neural network can construct the map between the state error information and disturbances to compensate for system disturbances. The effectiveness of the proposed method is validated by a series of simulations and flight tests. Compared with feedback control method, the adaptive neural network control method can estimate and eliminate disturbances quickly to yield a good tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J.V., Sjir, U., Nick, E.: Safety in high-risk helicopter operations: the role of additional crew in accident prevention. Saf. Sci. 47, 717–721 (2009)

    Article  Google Scholar 

  2. Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Robot Syst. 57, 417–449 (2010)

    Article  MATH  Google Scholar 

  3. Najib, M., Tarek, H.: A UAR for bridge inspection: visual servoing control law with orientation limits. Autom. Constr. 17, 3–10 (2007)

    Article  Google Scholar 

  4. Cai, G.W., Chen, B.M., Lee, T.H., Dong, M.B.: Design and implementation of a hardware-in-the-loop simulation system for small-scale UAV helicopters. Mechatronics 19, 1057–1066 (2009)

    Article  Google Scholar 

  5. Fabiani, P., Fuertes, V., Piquereau, A., Mampey, R., Teichteil, K.F.: Autonomous flight and navigation of VTOL UAVs: from autonomy demonstrations to out-of-sight flights. Aerosp. Sci. Technol. 11, 183–193 (2007)

    Article  Google Scholar 

  6. Pehlivanoglu, Y.V.: A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV. Aerosp. Sci. Technol. 16, 47–55 (2012)

    Article  Google Scholar 

  7. Paul, T., Thomas, R.K., Jan, T.G.: Modelling of UAV formation flight using 3D potential field. Simul. Model. Pract. Theory 16, 1453–1462 (2008)

    Article  Google Scholar 

  8. Lorenzo, M., Roberto, N.: Aggressive control of helicopters in presence of parametric and dynamical uncertainties. Mechatronics 18, 381–389 (2008)

    Google Scholar 

  9. Peng, K.M., Cai, G.W., Chen, B.M., Dong, M.B., Lum, K., Lee, T.H.: Deign and implementation of an autonomous flight control law for a uav helicopter. Automatica 45, 2333–2338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lorenzo, M., Roberto, N.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43, 1909–1920 (2007)

    Article  MATH  Google Scholar 

  11. Luo, C.H., Liu, R.F., Yang, C.D., Chang, Y.H.: Helicopter H\(\infty \) control design with robust flying quality. Aerosp. Sci. Technol. 7, 159–169 (2003)

    Article  MATH  Google Scholar 

  12. Carlo, L.B., Fabio, L., Giorgio, M.: Efficient rotorcraft trajectory optimization using comprehensive models by improved shooting methods. Aerosp. Sci. Technol. 23, 34–42 (2012)

    Article  Google Scholar 

  13. Liu, C.J., Chen, W.H., Andrews, J.: Tracking control of small scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Eng. Pract. 20, 258–268 (2012)

    Article  Google Scholar 

  14. Agus, B., Singgih, S.: Optimal tracking controller design for a small scale helicopter. J. Bionic Eng. 4, 271–280 (2007)

    Article  Google Scholar 

  15. Bayraktar, S., Feron, E.: Experiments with small unmanned helicopter nose up landings. J. Guid. Control Dyn. 32, 332–337 (2009)

    Article  Google Scholar 

  16. Douik, A.: Optimized eigenstructure assignment by ant system and LQR approaches. Int. J. Comput. Sci. Appl. 5, 45–56 (2008)

    Google Scholar 

  17. David, L., Gerardo, R., Anand, S., Rogelio, L., Alfredo, G.: Robustness margin for attitude control of a four rotor mini-rotorcraft: case of study. Mechatronics 20, 143–152 (2010)

    Google Scholar 

  18. Cai, G.W., Chen, B.M., Dong, X.X., Lee, T.H.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21, 803–820 (2011)

    Article  Google Scholar 

  19. Zheng, B., Zhong, Y.S.: Robust attitude regulation of a 3-DOF helicopter benchmark: theory and experiments. IEEE Trans. Ind. Electron. 58, 660–670 (2011)

    Article  Google Scholar 

  20. Isidori, A., Marconi, L., Serrani, A.: Robust nonlinear motion control of a helicopter. IEEE Trans. Autom. Control 48, 413–426 (2003)

    Article  MathSciNet  Google Scholar 

  21. Martens, D.: Neural networks as a tool for assessment of human pilot behavior in wind shear. Aerosp. Sci. Technol. 1, 39–48 (1999)

    Article  Google Scholar 

  22. Eric, N.J., Suresh, K.K.: Adaptive trajectory control for autonomous helicopters. J. Guid. Control Dyn. 28, 524–528 (2005)

    Article  Google Scholar 

  23. Ge, S.S., Ren, B.B., Lee, T.H.: Approximation based control of uncertain helicopter dynamic. IET Theory Appl. 3, 941–956 (2009)

    Article  MathSciNet  Google Scholar 

  24. Hana B, Omar B, Nassim R: Neural network control based on adaptive observer for quadrotor helicopter. Int. J. Inf. Technol. Control Autom. 2, 39–54 (2012)

    Google Scholar 

  25. Lei, X.S., Li, J.J.: An adaptive information fusion method for autonomous landing processes of small unmanned aerial rotorcraft. Sensors 12, 13212–13224 (2012)

    Article  Google Scholar 

  26. Gadewadikar, J., Lewis, F.L., Subbarao, K., Peng, K.M., Chen, B.M.: H\(_{\infty }\) static output feedback control for rotorcraft. J. Intell. Robot Syst. 59, 629–646 (2009)

    Article  Google Scholar 

  27. Lei, X.S., Du, Y.H.: A linear domain system identification for small unmanned aerial rotorcraft based on adaptive genetic algorithm. J. Bionic Eng. 7, 142–149 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xusheng Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, X., Ge, S.S. & Fang, J. Adaptive Neural Network Control of Small Unmanned Aerial Rotorcraft. J Intell Robot Syst 75, 331–341 (2014). https://doi.org/10.1007/s10846-013-0017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-0017-2

Keywords

Navigation