Skip to main content
Log in

Visual Control of Planar Parallel Robots Without Using Velocity Measurements

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work proposes an image-based visual servoing scheme applied to a class of overactuated planar parallel robots with revolute joints. A Proportional Derivative algorithm computes torques for the robot active joints. The Derivative action operates at the joint level and the Proportional action works at the visual level. A linear filter provides velocity estimates from active joint position measurements, and Lyapunov Stability theory allows concluding closed loop stability. Experimental results on a laboratory prototype show that the proposed approach permits using higher gains compared with a control law relying on velocity estimates generated using visual measurements; moreover, these experiments also show that the closed loop system is robust in face of kinematic uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kock, S., Schumacher, W.: A parallel x–y manipulator with actuation redundancy for high-speed and active stiffness application. In: Proc. of the Int. Conf. on Robotics and Automation. Leuven Belgium (1998)

  2. Kock, S., Schumacher, W.: A mixed elastic and rigid-body dynamic model of an actuation redundant parallel robot with high-reduction gears. In: Proc. of the Int. Conf. on Robotics and Automation. San Francisco, USA (2000)

  3. Kock, S., Schumacher, W.: Control of a fast parallel robot with a redundant chain and gearboxes: experimental results. In: Proc. of the Int. Conf. on Robotics and Automation. San Francisco, USA (2000)

  4. Liu, G., Li, Z.: A unified geometric approach to modeling and control of constrained mechanical systems. IEEE Trans. Robot. Autom. 18(4), 574–587 (2002)

    Article  Google Scholar 

  5. Ren, L., Mills, J.K., Sun, D.: Experimental comparison of control approaches on trajectory tracking control of a 3-DOF parallel robot. IEEE Trans. Control Syst. Technol. 15(5), 982–988 (2007)

    Article  Google Scholar 

  6. Kim, D.H., Kang, J.Y., Lee, K.I.: Robust tracking control design of a 6 DOF parallel manipulator. J. Robot. Syst. 17(10), 527–547 (2000)

    Article  MATH  Google Scholar 

  7. Tadokoro, S.: Control of parallel mechanisms. Adv. Robot. 8(6), 559–571 (1994)

    Article  Google Scholar 

  8. Merlet, J.P.: Parallel Robots. Klwuer Academic Publishers (2000)

  9. Tsai, L.W.: Robot Analysis. Wiley (1999)

  10. Cheng, H.: Dynamics and control of parallel manipulators with actuation redundancy. M. Sc. Thesis. Department of Electrical and Electronic Engineering, The Hong Kong University of Science and Technology (2001)

  11. Cheng, H., Yiu, Y.K., Li, Z.: Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Trans. Mechatron. 8(4), 483–491 (2003)

    Article  Google Scholar 

  12. Corke, P.: Visual Control of Robots: High performance Visual Servoing. Research Studies Press, Taunton, Somerset, England (1996)

    Google Scholar 

  13. Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Article  Google Scholar 

  14. Kelly, R.: Robust asymptotically stable visual servoing of planar robots. IEEE Trans. Robot. Autom. 12(5), 759–766 (1996)

    Article  Google Scholar 

  15. Papanikolopoulos, N., Khosla, P.: Adaptive robotic visual tracking: theory and experiments. IEEE Trans. Automat. Contr. 38(3), 429–444 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weiss, L., Sanderson, A., Newman, C.: Dynamic sensor-based control of robots with visual feedback. IEEE J. Robot. Autom. RA-3-, 404–417 (1987)

    Article  Google Scholar 

  17. Wilson, W., Williams Hulls, C., Bell, G.: Relative end-effector control using Cartesian position based visual servoing. IEEE Trans. Robot. Autom. 12(5), 684–696 (1996)

    Article  Google Scholar 

  18. Chaumette, F., Hutchinson, S.: Visual servo control part I: basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  19. Chaumette, F., Hutchinson, S.: Visual servo control part II: advanced approaches. IEEE Robot. Autom. Mag. 14(1), 109–118 (2007)

    Article  Google Scholar 

  20. Kragic, D., Christensen, H.I.: Survey on visual servoing for manipulation. Technical report ISRN KTH/NA/P-02/01-SE, Department of Numerical Analysis and Computing Science, University of Stockolm, Sweden (2005)

  21. Andreff, N., Martinet, Ph.: Unifying kinematic modeling, identification, and control of a Gough-Stewart parallel robot into a vision-based framework. IEEE Trans. Robot. 22(6), 1077, 1086 (2006)

    Article  Google Scholar 

  22. Andreff, N., Dallej, T., Martinet, P.: Image-based visual servoing of a Gough-Stewart parallel manipulator using leg observations. Int. J. Rob. Res. 26, 667–687 (2007)

    Article  Google Scholar 

  23. Dallej, T., Andreff, N., Martinet, Ph.: Image-based visual servoing of the I4R parallel robot without proprioceptive sensors. In: Proc. of the Int. Conf. on Robotics and Automation, Roma, Italy (2007)

  24. Dahmouche, R., Andreff, N., Mezouar, Y., Martinet, P.: 3D pose and velocity visual tracking based on sequential region of interest acquisition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis USA (2009)

  25. Angel, L., Traslosheros, A., Sebastian, J.M., Pari, L., Carelli, R., Roberti, F.: Vision-based control of the robotenis system. In: Recent Progress in Robotics. LNCIS 370, pp. 229–240. Springer Verlag (2008)

  26. Sebastian, J.M., Traslosheros, A., Angel, L., Roberti, F., Carelli, R.: Parallel robot high speed object tracking. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS 4633, pp. 295–306 (2007)

  27. Klobucar, R., J.Cas, Safaric, R.: Uncalibrated visual servo control with neural network. In: 10th IEEE International Workshop on Advanced Motion Control, AMC ’08, Trento Italy (2008)

  28. Tahri, O., Mezouar, Y., Andreff, N., Martinet, P.: Omnidirectional visual-servo of a Gough Stewart platform. IEEE Trans. Robot. 25(1), 178–183 (2009)

    Article  Google Scholar 

  29. Tahri, O., Mezouar, Y.: On visual servoing based on efficient second order minimization. Robot. Auton. Syst. 58(5), 712–719 (2010)

    Article  Google Scholar 

  30. Qi, Z., McInroy, J.E.: Nonlinear image based visual servoing using parallel robots. In: 2007 IEEE Int. Conf. on Robotics and Automation, Roma, Italy (2007)

  31. Qi, Z., McInroy, J.: Improved image based visual servoing with parallel robot. J. Intell. Robot. Syst. 53(4), 359–379 (2008)

    Article  Google Scholar 

  32. Paccot, F., Lemoine, Ph., Andreff, N., Chablat, D., Martinet, Ph.: A vision-based computed torque control for parallel kinematic machines. In: Proc. of the Int. Conf. on Robotics and Automation. Pasadena, CA, USA (2008)

  33. Xu, Q., Li, Y., Xi, N.: Design, fabrication, and visual servo control of an XY parallel micromanipulator with piezo-actuation. IEEE Transactions on Automation Science and Engineering 6(4), 710–719 (2009)

    Article  Google Scholar 

  34. Bellakehal, S., Andreff, N., Mezouar, Y., Tadjine, M.: Force/position control of parallel robots using exteroceptive pose measurements. Meccanica 46(1), 195–205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Garrido, R., Soria, A., Trujano, M.: Visual PID control of a redundant parallel robot. In: 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2008, Mexico City, Mexico (2008)

  36. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  37. Yiu, Y.K., Cheng, H., Xiong, Z.H., Liu, G.F., Li, Z.X.: On the dynamics of parallel manipulators. In: Proc. of the Int. Conf. on Robotics and Automation. Seoul, Korea (2001)

  38. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  39. Berghuis, H., Nijmeijer, H.: Global regulation of robots using only position measurements. Syst. Contr. Lett. 21(4), 289–293 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control. Princeton University Press, Princeton and Oxford (2008)

    MATH  Google Scholar 

  41. Soria, A., Garrido, R., Vásquez, I., Vázquez, R. (2006) Architecture for rapid prototyping of visual controllers. Robot. Auton. Syst. 54, 486–495

    Article  Google Scholar 

  42. Voss, K., Ortmann, W., Suesse, H.: DIAS-Interactive Image Processing System, V 5.0. Friedrich-Schiller-University Jena, Germany (1998)

  43. Trujano, M., Garrido, R., Soria, A.: Stable visual servoing of an overactuated planar parallel robot. In: 7th International Conference on Electrical Engineering Computing Science and Automatic Control, CCE 2010, Tuxtla Gutierrez, Mexico (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido, R., Soria, A. Visual Control of Planar Parallel Robots Without Using Velocity Measurements. J Intell Robot Syst 66, 111–124 (2012). https://doi.org/10.1007/s10846-011-9609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9609-x

Keywords

Navigation