Skip to main content
Log in

Obstacle-Free Pathway Detection by Means of Depth Maps

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The detection of surrounding obstacle-free space is an essential task for many intelligent automotive and robotic applications. In this paper we present a method to detect obstacle-free pathways in real-time using depth maps from a pair of stereo images. Depth maps are obtained by processing the disparity between left and right images from a stereo-vision system. The proposed technique assumes that depth of pixels in obstacle-free pathways should increase slightly and linearly from the bottom of the image to the top. The proposed real-time detection checks whether the depth of groups of image columns matches a linear model. Only pixels fulfilling the matching requirements are identified as obstacle-free pathways. Experimental results with real outdoor stereo images show that the method performance is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y., Fu, S., Thompson, C.: Stereovision-based object segmentation for automotive applications. EURASIP J. Appl. Signal Process. 2005(14), 2322–2329 (2005)

    Article  MATH  Google Scholar 

  2. Bertozzi, M., Broggi, A.: Gold: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7(1), 62–81 (1998)

    Article  Google Scholar 

  3. Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection: a review. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 694–711 (2006)

    Article  Google Scholar 

  4. Blanco, J.L., Gonzalez, J., Fernandez-Madrigal, J.A.: Exteding obstacle avoidance methods through multiple parameter-space transformations. Auton. Robots 24(1), 29–48 (2008)

    Article  Google Scholar 

  5. Lindner, P., Wanielik, G.: 3d lidar processing for vehicle safety and environment recognition. In: IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, pp. 66–71. IEEE (2009)

  6. Dolgov, D., Thrun, S.: Autonomous driving in semi-structured environments: mapping and planning. In: International IEEE Conference on Robotics and Automation, pp. 3407–3414. IEEE (2009)

  7. Hernandez, A., Ureña, J., Mazo, M., Garcia, J.J., Jimenez, A., Jimenez, J.A., Perez, M.C., Alvarez, F.J., De Marziani, C., Derutin, J.P., Serot, J.: Advanced adaptive sonar for mapping applications. J. Intell. Robot. Syst. 55(1), 81–106 (2009)

    Article  MATH  Google Scholar 

  8. Del Castillo, G., Skaar, S., Cardenas, A., Fehr, L.: A sonar approach to obstacle detection for a vision-based autonomous wheelchair. Robot. Auton. Syst. 54(12), 967–981 (2006)

    Article  Google Scholar 

  9. Duan, B.B., Liu, W., Fu, P.Y., Yang, C.Y., Wen, X.Z., Yuan, H.: Real-time on-road vehicle and motorcycle detection using a single camera. In: IEEE International Conference on Industrial Technology, pp. 579–584. IEEE (2009)

  10. Chen, C., Tai, C.: Adaptive fuzzy color segmentation with neural network for road detections. Eng. Appl. Artif. Intell. (2009). doi:10.1016/j.engappai.2009.12.004

    Google Scholar 

  11. Oliveira, L., Nunes, U.: On integration of features and classifiers for robust vehicle detection. In: IEEE International Conference on Intelligent Transportation Systems, pp. 414–419. IEEE (2008)

  12. Nalpantidis, L., Kostavelis, I., Gasteratos, A.: Stereovision-based algorithm for obstacle avoidance. In: Lecture Notes in Computer Science. Intelligent Robotics and Applications (2009)

  13. Franke, U., Heinrich, S.: Fast obstacle detection for urban traffic situations. IEEE Trans. Intell. Transp. Syst. 3(3), 173–181 (2002)

    Article  Google Scholar 

  14. Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Auton. Robots 8(2), 161–171 (2000)

    Article  Google Scholar 

  15. Seki, A., Okutomi, M.: Robust obstacle detection in general road environment based on road extraction and pose estimation. Electron. Commun. Jpn., Part 2, Electron. 90(12), 12–22 (2007)

    Article  Google Scholar 

  16. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereo vision on non-flat road geometry through v-disparity representation. In: INRIA. IEEE Intelligent Vehicle Symposium (2002)

  17. Wedel, A., Badino, H., Rabe, C., Loose, H., Franke, U., Cremers, D.: B-spline modeling of road surfaces with an application to free-space estimation. IEEE Trans. Intell. Transp. Syst. 10(4), 572–583 (2009)

    Article  Google Scholar 

  18. Nguyen, T.H., Nguyen, J.S., Pham, D.M., Nguyen, H.T.: Real-time obstacle detection for an autonomous wheelchair using stereoscopic cameras. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007(1), 4775–4778 (2007)

    Google Scholar 

  19. Grosso, E., Tistarelli, M.: Active/dynamic stereo vision. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 868–879 (1995)

    Article  Google Scholar 

  20. Vergauwen, M., Pollefeys, M., Van Gool, L.: A stereo-vision system for support of planetary surface exploration. Mach. Vis. Appl. 14(1), 5–14 (2003)

    Article  Google Scholar 

  21. Franke, U., Joos, A.: Real-time stereo vision for urban traffic scene understanding. In: IEEE Intelligent Vehicles Symposium. IEEE (2000)

  22. Badino, H., Mester, R., Vaudrey, T., Franke, U.: Stereo-based free space computation in complex traffic scenarios. In: IEEE Southwest Symposium on Image Analysis & Interpretation, pp. 189–192 (2008)

  23. Badino, H., Franke, U., Mester, R.: Free space computation using stochastic occupancy grids and dynamic programming. In: Workshop on Dynamical Vision, ICCV. Rio de Janeiro, Brazil (2007)

  24. Henrich, D., Gecks, T.: Multi-camera collision detection between known and unknown objects. In: IEEE International Conference on Distributed Smart Cameras, pp. 390–399. IEEE (2008)

  25. Nalpantidis, L., Chrysostomou, D., Gasteratos, A.: Obtaining reliable depth maps for robotic applications from a quad-camera system. In: International Conference on Intelligent Robotics and Applications. Lecture Notes in Artificial Intelligence, pp. 906–916 (2009)

  26. Lovegrove, W., Brame, B.: Single-camera stereo vision for obstacle detection in mobile robots. In: Intelligent Robots and Computer Vision XXV: Algorithms, Techniques and Active Vision, pp. T7640–T7640. Conference on Intelligent Robots and Computer Vision XXV—Algorithms, Techniques, and Active Vision (2007)

  27. Wang, H., Yuan, K., Zou, W., Peng, Y.: Real-time region-based obstacle detection with monocular vision. In: International Conference on Robotics and Biomimetics, pp. 615–619. IEEE (2005)

  28. Choi, S., Jin, T., Lee, J.: Obstacle avoidance algorithm for visual navigation using ultrasonic sensors and a ccd camera. Artif. Life Robot. 7(3), 132–135 (2003)

    Article  Google Scholar 

  29. Premebida, C., Ludwig, O., Nunes, U.: Lidar and vision-based pedestrian detection system. Journal of Field Robotics 26(9), 696–711 (2009)

    Article  Google Scholar 

  30. Premebida, C., Monteiro, G., Nunes, U., Peixoto, P.: A lidar and vision-based approach for pedestrian and vehicle detection and tracking. In: International IEEE Conference on Intelligent Transportation Systems, pp. 83–88. IEEE (2007)

  31. Douillard, B., Fox, D., Ramos, F.: A spatio-temporal probabilistic model for multi-sensor object recognition. In: International Conference on Intelligent Robots and Systems, pp. 2408–2414. IEEE (2007)

  32. Tsalatsanis, A., Valavanis, K., Yalcin, A.: Vision based target tracking and collision avoidance for mobile robots. J. Intell. Robot. Syst. 48(2), 285–304 (2007)

    Article  Google Scholar 

  33. Tsalatsanis, A., Valavanis, K., Tsourveloudis, N.: Mobile robot navigation using sonar and range measurements from uncalibrated cameras. J. Intell. Robot. Syst. 48(2), 253–284 (2007)

    Article  Google Scholar 

  34. Loomis, J.M., Golledge, R.G., Klatzky, R.L.: Navigation system for the blind: auditory display modes and guidance. Presence 7(2), 193–203 (1998)

    Article  Google Scholar 

  35. Snaith, M., Lee, D., Probert, P.: A low-cost system using sparse vision for navigation in the urban environment. Image Vis. Comput. 16(4), 225–233 (1998)

    Article  Google Scholar 

  36. Se, S., Brady, M.: Road feature detection and estimation. Mach. Vis. Appl. 14(3), 157–165 (2003)

    Google Scholar 

  37. Molton, N., Se, S., Brady, J.M., Lee, D., Probert, P.: A stereo vision-based aid for the visually impaired. Image Vis. Comput. 16(4), 251–263 (1998)

    Article  Google Scholar 

  38. Picton, P.D., Capp, M.D.: Relaying scene information to the blind via sound using cartoon depth maps. Image Vis. Comput. 26(4), 570–577 (2008)

    Article  Google Scholar 

  39. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), 7–42 (2002)

    Article  MATH  Google Scholar 

  40. Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. Int. J. Comput. Vis. 17(3), 269–293 (1999)

    Article  Google Scholar 

  41. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press. ISBN: 0521540518 (2004)

  42. Bohannon, R.W.: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26(1), 15–19 (1997)

    Article  Google Scholar 

  43. Spiegel, M.R., Stepthens, L.J.: Statistics, 4th edn. Mc Graw Hill (2008)

  44. Kubota, S., Nakano, T., Okamoto, Y.: A global optimization for real-time on-board stereo obstacle detection systems. In: IEEE Intelligent Vehicles Symposium. IEEE (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Ortigosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortigosa, N., Morillas, S. & Peris-Fajarnés, G. Obstacle-Free Pathway Detection by Means of Depth Maps. J Intell Robot Syst 63, 115–129 (2011). https://doi.org/10.1007/s10846-010-9498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9498-4

Keywords

Navigation