Skip to main content
Log in

Inverse Dynamic Model and a Control Application of a Novel 6-DOF Hybrid Kinematics Manipulator

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Kinematics with six degrees of freedom can be of several types. This paper describes the inverse dynamic model of a novel hybrid kinematics manipulator. The so-called Epizactor consists of two planar disk systems that together move a connecting element in 6 DOF. To do so each of the disk systems has a linkage point equipped with a homokinetic joint. Each disk system can be described as a serial 3-link planar manipulator with unlimited angles of rotation. To compensate singularities, a kinematic redundancy is introduced via a fourth link. The kinematic concept leads to several technical advantages for compact 6-DOF-manipulators when compared to established parallel kinematics: The ratio of workspace volume and installation space is beneficial, the number of kinematic elements is smaller, and rotating drives are used exclusively. For a singularity-robust control-approach, the inverse dynamic model is derived using the iterative Newton–Euler-method. Feasibility is shown by the application of the model to an example where excessive actuator velocities and torques are avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angeles, J.: Fundamentals of robotic mechanical systems: theory, methods, and algorithm. Springer, Heidelberg (2003)

    Book  Google Scholar 

  2. Chen, Y., McInroy, J.: Decoupled control of flexure-jointed hexapods using estimated joint-space mass-inertia matrix. IEEE Trans. Control Syst. Technol. 12, 413–421 (2004)

    Article  Google Scholar 

  3. Chung, Y., Lee, B.: Torque optimizing control with singularity-robustness for kinematically redundant robots. J. Intell. Robot. Syst. 28, 231–258 (2000)

    Article  MATH  Google Scholar 

  4. Craig, J.: Introduction to Robotics, Mechanics and Control. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  5. Gough, V., Whitehall, S.: Universal Tyre Test Machine. IX Int. Techn. Congr. F.I.S.I.T.A., London, GB (1962)

  6. Hebsacker, M., Codourey, A.: Die Auslegung der Kinematik des Hexaglide—Methodik fuer die Auslegung paralleler Werkzeugmaschinen. VDI Fachtagung Parallele Strukturen, Braunschweig, Germany (1998)

  7. Huynh, P.: Kinematic performance comparison of linar type parallel mechanisms, application to the design and control of a hexaslide. In: 5th International Conference on Mechatronics Technology (ICMT), Singapore (2001)

  8. Koekebakker, S., Teerhuis, P., Van der Weiden, A.: Multiple level control of a hydraulically driven flight simulator motion system. In: CESA Conference, Hammammet, Tunisia (1998)

    Google Scholar 

  9. Matek, W., Muhs, D., Wittel, H., Becker, M.: Roloff/Matek—Maschinenelemente, 13. Auflage, Vieweg Verlag, Braunschweig, Germany (1995)

  10. Matek, W., Muhs, D., Wittel, H., Becker, M.: Tabelle 8–12 Reibungzahlen fuer Schraubenverbindungen bei verschiedenen Oberflaechen- und Schmierzustaenden. In: Matek, W., Muhs, D., Wittel, H., Becker, M. (eds.) Roloff/Matek Maschinenelemente. Vieweg, Braunschweig, Germany (1995)

  11. Matek, W., Muhs, D., Wittel, H., Becker, M.: Tabelle 14–23 c) Reibungszahl fuer vollumschließende Gleitlager. In: Matek, W., Muhs, D., Wittel, H., Becker, M. (eds.) Roloff/Matek Maschinenelemente. Vieweg, Braunschweig, Germany (1995)

  12. Merlet, J.: Dispositif articulé, notamment utilisable dans le domaine de la robotique. App. No.: 2628670 (1988)

  13. Pott, P.P.: Untersuchung von Kinematiken fuer handgehaltene Roboter. Fakultaet fuer Mathematik und Informatik. Dissertation, Universitaet Mannheim (2008)

  14. Pott, P.P., Koepfle, A., Wagner, A., Badreddin, E., Maenner, R., Weiser, P., Scharf, H.-P., Schwarz, M.L.R.: Erste Versuche mit dem handgehaltenen Operationsroboter ITD. 38. Jahrestagung der DGBMT, Ilmenau, Germany (2004)

    Google Scholar 

  15. Pott, P.P., Wagner, A., Koepfle, A., Badreddin, E., Maenner, R., Weiser, P., Scharf, H.-P., Schwarz, M.L.R.: A handheld surgical manipulator: ITD—design and first results. CARS, Chicago, Illinois, USA (2004)

    Google Scholar 

  16. Pott, P.P., Scharf, H.-P., Schwarz, M.L.R.: Today’s state of the art of surgical robotics. J. Comput. Aided Surg. 10, 101–132 (2005)

    Google Scholar 

  17. Pott, P.P., Schwarz, M.L.R.: Robotik, navigation, telechirurgie: stand der technik und marktuebersicht. Z Orthop 140, 218–231 (2002)

    Article  Google Scholar 

  18. Pott, P.P., Schwarz, M.L.R.: The relation of workspace and installation space of epicyclic kinematics with six degrees of freedom. Biomed Tech 52, 323–336 (2007)

    Article  Google Scholar 

  19. Pott, P.P., Schwarz, M.L.R., Koepfle, A., Schill, M., Wagner, A., Badreddin, E., Maenner, R., Weiser, P., Scharf, H.-P.: Ein Handgehaltener Operationsroboter—Grundlagen, Spezifikationen und Loesungsentwurf. 1. Jahrestagung der CURAC, Leipzig, Germany (2002)

    Google Scholar 

  20. Pott, P.P., Schwarz, M.L.R., Wagner, A., Badreddin, E.: Comparative study of robot-designs for a handheld medical robot. In: 5th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2008, Funchal, Madeira, Portugal (2008)

    Google Scholar 

  21. Pott, P.P., Schwarz, M.L.R., Heute, S., Weiser, P., Wagner, A., Badreddin, E.: Novel hybrid kinematics with small dimensions and large workspaces make medical robots convenient for orthopaedic surgery. CARS, Berlin, Germany (2009)

    Google Scholar 

  22. Siciliano, B.: Kinematic control of redundant robot manipulators: a tutorial. J. Intell. Robot. Syst. 3, 201–212 (1990)

    Article  Google Scholar 

  23. Stewart, D.: A platform with six degrees of freedom. Proc. Mech. Eng. 180, 371–386 (1965)

    Article  Google Scholar 

  24. Toenshoff, H., Grendel, H., Grotjahn, M.: Modelling and control of a linear direct driven hexapod. In: 3rd Chemnitz Parallel Kinematics Seminar PKS, Chemnitz, Germany (2002)

    Google Scholar 

  25. Wagner, A., Nuebel, M., Badreddin, E., Pott, P.P., Schwarz, M.L.R.: Disturbance feed-forward-control of a handheld robot. In: 4th ICINCO 2007, Angers, France (2007)

    Google Scholar 

  26. Wagner, A., Pott, P.P., Schwarz, M.L.R., Scharf, H.-P., Weiser, P., Koepfle, A., Maenner, R., Badreddin, E.: Control of a handheld robot for orthopedic surgery. In: 3rd IFAC Symposium on Mechatronic Systems, Manly Beach, Sydney, Australia (2004)

  27. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Rob. Res. 4, 3–9 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Paul Pott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pott, P.P., Wagner, A., Badreddin, E. et al. Inverse Dynamic Model and a Control Application of a Novel 6-DOF Hybrid Kinematics Manipulator. J Intell Robot Syst 63, 3–23 (2011). https://doi.org/10.1007/s10846-010-9464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9464-1

Keywords

Mathematics Subject Classification (2010)

Navigation