Skip to main content

Advertisement

Log in

Adaptive Impedance Control for Upper-Limb Rehabilitation Robot Using Evolutionary Dynamic Recurrent Fuzzy Neural Network

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Control system implementation is one of the major difficulties in rehabilitation robot design. A newly developed adaptive impedance controller based on evolutionary dynamic fuzzy neural network (EDRFNN) is presented, where the desired impedance between robot and impaired limb can be regulated in real time according to the impaired limb’s physical recovery condition. Firstly, the impaired limb’s damping and stiffness parameters for evaluating its physical recovery condition are online estimated by using a slide average least squares (SALS)identification algorithm. Then, hybrid learning algorithms for EDRFNN impedance controller are proposed, which comprise genetic algorithm (GA), hybrid evolutionary programming (HEP) and dynamic back-propagation (BP) learning algorithm. GA and HEP are used to off-line optimize DRFNN parameters so as to get suboptimal impedance control parameters. Dynamic BP learning algorithm is further online fine-tuned based on the error gradient descent method. Moreover, the convergence of a closed loop system is proven using the discrete-type Lyapunov function to guarantee the global convergence of tracking error. Finally, simulation results show that the proposed controller provides good dynamic control performance and robustness with regard to the change of the impaired limb’s physical condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lum, P.S., Burgar, C.G., Shor, P.C., et al.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959 (2002)

    Article  Google Scholar 

  2. Riener, R., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 43, 2–10 (2005)

    Article  Google Scholar 

  3. Lum, P.S., Burgar, C.G., Van der, M., et al.: The MIME robotic system for upper-limb neuro rehabilitation: results from a clinical trial in subacute stroke. In: Proc. 9th Int. Conf. on Rehabilitation Robotics, Chicago, USA, pp. 511–514 (2005)

  4. Wege, A., Kondak, K., Hommel, G.: Force control strategy for a hand exoskeleton based on sliding mode position control. In: Proc. Int. Conf. on Intelligent Robots and Systems, Beijing, China, pp. 4615–4620 (2006)

  5. Ju, M.S., Lin, C.C.K., Lin, D.H., et al.: A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Trans. Neural Systems Rehabil. Eng. 13, 349–358 (2005)

    Article  Google Scholar 

  6. Patton, J.L., Mussa-Ivaldi, F.A.: Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Trans. Biomed. Eng. 51, 636–646 (2004)

    Article  Google Scholar 

  7. Kiguchi, K., Tanaka, T., Fukuda, T.: Neuro-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Trans. Fuzzy Syst. 12, 481–490 (2005)

    Article  Google Scholar 

  8. Valbuena, D., Cyriacks, M., Friman, O., et al.: Brain–Computer Interface for high-level control of rehabilitation robotic systems. In: Proc. 10th Int. Conf. on Rehabilitation Robotics, Noordwijk, Netherlands, pp. 619–625 (2007)

  9. Hogan, N.: Impedance control: an approach to manipulation: Part 1—theory, Part 2—implementation, and Part 3—application. ASME J. Dyn. Syst. Meas. Control 107, 1–24 (1985)

    Article  MATH  Google Scholar 

  10. Takaiwa, M., Noritsugu, T.: Development of wrist rehabilitation equipment using pneumatic parallel manipulator. In: Proc. Int. Conf. on Robotics and Automation, Barcelona, Spain, pp. 2302–2307 (2005)

  11. Richardson, R., Jackson, A., Culmer, P., et al.: Pneumatic impedance control of a 3-DOF physiotherapy robot. Adv. Robot. 20(12), 1321–1339 (2006)

    Article  Google Scholar 

  12. Akdoğan, E., Taçgın, E., Adli, M.A.: Knee rehabilitation using an intelligent robotic system. J. Intell. Manuf. 20, 195–202 (2009)

    Google Scholar 

  13. Veneman, J.F., Kruidhof, R., Hekman, E.E.G., et al.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–385 (2007)

    Article  Google Scholar 

  14. Tsuji, T., Tanaka, Y.: On-line learning of robot arm impedance using neural networks. Robot. Auton. Syst. 52, 257–271 (2005)

    Article  Google Scholar 

  15. Shao, H., Nonami, K., Wojtara, T.: Position and impedance force control of tele-operated master-slave robot hand system. Robotica 23, 793 (2005)

    Article  Google Scholar 

  16. Tsuji, T., Tanaka, Y.: Tracking control properties of human-robotic systems based on impedance control. IEEE Trans. Syst. Man Cybern. 35, 523–535 (2005)

    Article  Google Scholar 

  17. Kiguchi, K., Rahman, M.H., Yamaguchi, T.: Adaptation strategy for the 3DOF exoskeleton for upper-limb motion assist. In: Proc. Int. Conf. on Robotics and Automation, Barcelona, Spain, pp. 2296–2301 (2005)

  18. Kiguchi, K., Rahman, M.H., Sasaki, M., et al.: Development of a 3 DOF mobile exoskeleton robot for human upper-limb motion assist. Robot. Auton. Syst. 56, 678–691 (2008)

    Article  Google Scholar 

  19. Lee, C.H., Teng, C.C.: Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 8, 349–366 (2000)

    Article  Google Scholar 

  20. Juang, C.F., Chung, I.F.: Recurrent fuzzy network design using hybrid evolutionary learning algorithms. Neurocomputing 70, 3001–3010 (2007)

    Article  Google Scholar 

  21. Lin, F.J., Huang, P.K., Chou, W.D.: A genetic algorithm based recurrent fuzzy neural network for linear induction motor servo drive. Journal of the Chinese Institute of Engineers 30(5), 801–817 (2007)

    Article  Google Scholar 

  22. Zhang, L.Q., Portland, G.H., Wang, G., et al.: Stiffness, viscosity, and upper-limb inertia about the glenohumeral abduction axis. J. Orthop. Res. 18(1), 94–100 (2000)

    Article  Google Scholar 

  23. Zhang, L.-Q., Chung, S.G., Bai, Z., et al.: Intelligent stretching of ankle joints with contracture/spasticity. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 149–157 (2002)

    Article  Google Scholar 

  24. Farag, W.A., Quintana, V.H., Lambert-Torres, G.: A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems. IEEE Trans. Neural Netw. 9, 756–767 (1998)

    Article  Google Scholar 

  25. Chang, P.C., Wang, Y.W., Liu, C.H.: The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Syst. Appl. 32, 86–96 (2007)

    Article  Google Scholar 

  26. Leung, F.H.F., Lam, H.K., Ling, S.H., et al.: Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 14, 79–88 (2003)

    Article  Google Scholar 

  27. Hussein, S.B., Jamaluddin, H., Mailah, M., et al.: A hybrid intelligent active force controller for robot arms using evolutionary neural networks. In: Proc. Cong. On Evolutionary and Computation, pp. 117–124 (2000)

  28. Liu, S., Wang, Y., Zhu, Q.: Development of a new EDRNN procedure in control of human arm trajectories. Neurocomputing 72, 490–499 (2008)

    Article  Google Scholar 

  29. Lin, C.J.: A GA-based neural fuzzy system for temperature control. Fuzzy Sets Syst. 143, 311–333 (2004)

    Article  MATH  Google Scholar 

  30. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)

    Article  Google Scholar 

  31. Koenig, A., Williams, J., Pekarek, S.: Optimization of an automotive generator using evolutionary programming. In: Proc. 58th Conf. on Vehicular Technology, vol. 5, pp. 3212–3219 (2003)

  32. Lin, C.C., Ju, M.S., Lin, C.W., et al.: The pendulum test for evaluating spasticity of the elbow joint. Arch. Phys. Med. Rehabil. 84, 69–74 (2003)

    Article  Google Scholar 

  33. Noritsugu, T., Tanaka, T.: Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Trans. Mechatronics 2, 259–267 (1997)

    Article  Google Scholar 

  34. Baptista, L.F., Sousa, J.M., da Costa, J.M.G.S.: Fuzzy predictive algorithms applied to real-time force control. Control Eng. Pract. 9, 411–423 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Song, A. & Li, H. Adaptive Impedance Control for Upper-Limb Rehabilitation Robot Using Evolutionary Dynamic Recurrent Fuzzy Neural Network. J Intell Robot Syst 62, 501–525 (2011). https://doi.org/10.1007/s10846-010-9462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9462-3

Keywords

Navigation