Skip to main content
Log in

Neural Network Solution for Forward Kinematics Problem of Cable Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Forward kinematics problem of cable robots is very difficult to solve the same as that of parallel robots and in the contrary to the serial manipulators’. This problem is almost impossible to solve analytically because of the nonlinearity and complexity of the robot’s kinematic equations. Numerical methods are the most common solutions for this problem of the parallel and cable robots. But, convergency of these methods is the drawback of using them. In this paper, neural network approach is used to solve the forward kinematics problem of an exemplary 3D cable robot. This problem is solved in the typical workspace of the robot. The neural network used in this paper is of the MLP type and a back propagation procedure is utilized to train the network. A simulation study is performed and the results show the advantages of this method in enhancement of convergency together with very small modeling errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(15 pt 1), 371–386 (1965)

    Google Scholar 

  2. Merlet, J.-P.: Parallel Robots, Solid Mechanics and Its Applications. Kluwer, Norwell (2001)

    Google Scholar 

  3. Merlet, J.-P.: Still a long way to go on the road for parallel mechanisms. In: A Keynote Speech at ASME 2002 DETC Conference, Montreal, Quebec, Canada (2002)

  4. Merlet, J.-P.: Parallel Robots, Open Problems. INRIA Sophia-Antipolis, France. http://www.-sop.inria.fr

  5. Tsai, L.-W.: Robot Analysis, The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  6. Bosscher, P., Riechel, A.T., Ebert-Uphoff, I.: Wrench-feasible workspace generation for cable-driven robots. IEEE Trans. Robot. 22(4), 890–902 (2006)

    Article  Google Scholar 

  7. Riechel, A.T., Ebert-Uphoff, I.: Force-feasible workspace analysis for underconstrained point-mass cable robots. Proc. IEEE Int. Conf. Robot. Autom. 5, 4956–4962 (2004)

    Google Scholar 

  8. Kawamura, S., Choe, W., Tanaka, S., Pandian, S.R.: Development of an ultrahigh speed FALCON using wire drive system. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 215–220 (2003)

  9. Lafourcade, P., Llibre, M., Reboulet, C.: Design of a parallel wire-driven manipulator for wind tunnels. In: Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec, Canada, pp. 187–194 (2002)

  10. Diao, X., Ma, O., Paz, R.: Study of 6-DOF cable robots for potential application of HIL microgravity contact-dynamics simulation. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit (M&ST 2006), Keystone, CO, USA, pp. 1097–1110 (2006)

  11. Gallina, P., Rosati, G., and Rossi, A.: 3-D.O.F. wire driven planar haptic interface. J. Intell. Robot. Syst. 32, 23–36 (2001)

    Article  MATH  Google Scholar 

  12. Albus, J.; Bostelman, R., Dagalakis, N.: The NIST robocrane. J. Robot. Syst. 10, 709–724 (1993)

    Article  Google Scholar 

  13. Merlet, J.-P.: Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis. Int. J. Rob. Res. 23(2), 221–235 (2004)

    Article  Google Scholar 

  14. Lee, T.-Y., Shim, J.-K.: Forward kinematics for the general 6-6 Stewart platform using algebraic elimination. Mech. Mach. Theory 36, 1073–1085 (2001)

    Article  MATH  Google Scholar 

  15. Lee, T.-Y., Shim, J.-K.: Improved dialytic elimination for the forward kinematics of the general Stewart-Gough platform. Mech. Mach. Theory 38, 563–577 (2003)

    Article  MATH  Google Scholar 

  16. Faugere, J.-C., Merlet, J.-P., Rouillier, F.: On solving the direct kinematics problem for parallel robots. INRIA Sophia-Antipolis, Report No. 5923 (2006)

  17. Gan, D., Liao, Q., Dai, J.S., Wei, S., Senevirtne, L.D.: Forward displacement analysis of the general 6-6 Stewart mechanism using Grobner basis. Mech. Mach. Theory 44, 1640–1647 (2009)

    Article  MATH  Google Scholar 

  18. Raghavan, M.: The Stewart platform of general geometry has 40 configurations. In: Proceedings of the ASME Design and Automation Conference, Chicago, IL, vol. 32 (1991)

  19. Merlet, J.-P.: Direct kinematics of parallel manipulators. IEEE Trans. Robot. Autom. 9(2), 842–846 (1993)

    Article  Google Scholar 

  20. Baron, L., Angeles, J.: The direct kinematics of parallel manipulators under joint-sensor redundancy. IEEE Trans. Robot. Autom. 16(1), 12–19 (2000)

    Article  Google Scholar 

  21. Wang, Y.A.: A direct numerical solution to forward kinematics of general Stewart–Gough platforms. J. Robot. 25(1), 121–128 (2007)

    Article  Google Scholar 

  22. Williams, R.L. II, Gallina, P.: Translational planar cable-direct-driven robots. J. Intell. Robot. Syst. 37, 69–96 (2003)

    Article  Google Scholar 

  23. Trevisani, A., Gallina, P., Williams II, R.L.: Cable-direct-driven robot (CDDR) with passive SCARA support: theory and simulation. J. Intell. Robot. Syst. 46, 73–94 (2006)

    Article  Google Scholar 

  24. Bosscher, P., Williams II, R.L., Bryson, L.S., Castro-Lacouture, D.: Cable-suspended robotic contour crafting system. J. Autom. Construct. 217, 45–55 (2007)

    Article  Google Scholar 

  25. Joshi, S.A., Surianarayan, A.: Calibration of a 6-DOF cable robot using two inclinometers. In: Proceedings of the PerMIS 2003 Conference, USA (2003)

  26. Chen, W., Chen, Q., Zhang, J., Yu, S.: Forward kinematics and workspace analysis for a 7-DOF cable-driven humanoid arm. In: Proceedings of the 2006 IEEE International Conference of Robotics and Biomimetics, China, pp. 1175–1180 (2006)

  27. Merlet, J.-P.: Kinematics of the wire-driven parallel robot MARIONET using linear actuators. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 3857–3862 (2008)

  28. Medsker, L., Liebowitz, J.: Design and Development of Expert Systems and Neural Networks. Macmillan, New York (1994)

    MATH  Google Scholar 

  29. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  30. Patterson, D.: Artificial Neural Networks. Prentice Hall, Singapore (1996)

    MATH  Google Scholar 

  31. Geng, Z., Haynes, L.: Neural network solution for the forward kinematics problem of a Stewart platform. Robot. Comput. Integr. Manuf. 9(5), 485–495 (1992)

    Google Scholar 

  32. Yee, C.S.: Forward kinematics solution of Stewart platform using neural networks. J. Neurocomputing 16(3), 333–349 (1997)

    Article  Google Scholar 

  33. Yu, D.-Y., Cong, D.-C., Han, J.-W.: Parallel robots pose accuracy compensating using artificial neural networks. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, China (2005)

  34. Ghobakhlo, A., Eghtesad, M.: Neural network solution for the forward kinematics problem of a redundant hydraulic shoulder. In: IEEE EICON’05 (2005)

  35. Sadjadian, H., Taghirad, H.M., Fatehi, A.: Neural network solution for computing the forward kinematic of a redundant parallel manipulator. Int. J. Comput. Intell. 2(1), 40–47 (2005)

    Google Scholar 

  36. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators, 2nd edn. Springer, New York (2000)

    Google Scholar 

  37. Ghasemi, A., Eghtesad, M., Farid, M.: Workspace analysis of planar and spatial redundant cable robots. ASME J. Mech. Robot. 1(4), 044502-1–044502-6 (2009)

    Google Scholar 

  38. Alp, A.B., Agrawal, S.K.: Cable suspended robots: design, planning and control. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Eghtesad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, A., Eghtesad, M. & Farid, M. Neural Network Solution for Forward Kinematics Problem of Cable Robots. J Intell Robot Syst 60, 201–215 (2010). https://doi.org/10.1007/s10846-010-9421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9421-z

Keywords

Navigation