Skip to main content

Advertisement

Log in

Predictive Guidance-Based Navigation for Mobile Robots: A Novel Strategy for Target Interception on Realistic Terrains

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel online trajectory planning method for the autonomous robotic interception of mobile targets in the presence of dynamic obstacles. The objective is time-optimal position and velocity matching (also referred to as rendezvous) while traversing realistic terrains with uneven topologies. The primary novelty of the proposed interception method lies in its ability to minimize rendezvous time with the target, as well as energy consumption, by directly considering the dynamics of the obstacles and the target while accurately determining a feasible way to travel through the realistic terrain. This objective is achieved by computing rendezvous maneuvers using an advanced predictive guidance law. The method is designed to effectively cope with maneuvering targets/obstacles by predicting their future velocities and accelerations. Obstacle avoidance and terrain navigation are seamlessly integrated. Extensive simulation and experimental analyses, some of which are reported in this paper, have clearly demonstrated the time efficiency of the proposed rendezvous method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunwar, F., Wong, F., Ben Mrad, R., Benhabib, B.: Rendezvous guidance for the autonomous interception of moving objects in cluttered environments. In: IEEE Conference on Robotics and Automation, pp. 3787–3792. Barcelona, Spain (2005)

  2. Kunwar, F., Wong, F., Ben Mrad, R., Benhabib, B.: Time-optimal rendezvous with moving objects in dynamic cluttered environments using a guidance based technique. In: IEEE Conference on Intelligent Robots and Systems, pp. 283–288. Edmonton, Canada (2005)

  3. Zarchan, P.: Tactical and strategic missile guidance, 4th edn. American Institute of Aeronautics and Astronautics, Reston, VA (2003)

  4. Pastrick, H.L., Seltzer, S.M., Warren, M.E.: Guidance laws for short-range tactical missiles. J. Guid. Control Dyn. 4(2), 98–108 (1981)

    Article  Google Scholar 

  5. Anderson, G.M.: Comparison of optimal control and differential game intercept missile guidance law. AIAA J. Guid. Control 4(2), 109–115 (1981)

    Article  Google Scholar 

  6. Ghose, D.: True proportional navigation with manoeuvring target. IEEE Trans. Aerosp. Electron. Syst. 1(30), 229–237 (1994)

    Article  Google Scholar 

  7. Speyer, T.J., Kim, K., Tahk, M.: Passive homing missile guidance law based on new target maneuver models. J. Guid. 1(13), 803–812 (1990)

    Article  MathSciNet  Google Scholar 

  8. Yang, C.D., Yang, C.C.: A unified approach to proportional navigation. IEEE Trans. Aerosp. Electron. Syst. 33(2), 557–567 (1997)

    Article  Google Scholar 

  9. Yuan, P.J., Hsu, S.C.: Rendezvous guidance with proportional navigation. J. Guid. Control Dyn. 17(2), 409–411 (1993)

    Article  Google Scholar 

  10. Guelman, M.: Guidance for asteroid rendezvous. J. Guid. Control Dyn. 14(5), 1080–1083 (1990)

    Article  Google Scholar 

  11. Jensen, D.L.: Kinematics of rendezvous manoeuvres. J. Guid. 7(3), 307–314 (1984)

    Article  MATH  Google Scholar 

  12. Piccardo, H.R., Hondered, G.: A new approach to on-line path planning and generation for robots in non-static environment. J. Robotics Autonom. Syst. 8, 187–201 (1991)

    Article  Google Scholar 

  13. Mehrandezh, M., Sela, M.N., Fenton, R.G., Benhabib, B.: Robotic interception of moving objects using an augmented ideal proportional navigation guidance technique. IEEE Trans. Syst. Man Cybern. 30(3), 238–250 (2000)

    Article  Google Scholar 

  14. Borg, J.M., Mehrandezh, M., Fenton, R.G., Benhabib, B.: Navigation-guidance-based robotic interception of moving objects in industrial settings. J. Intell. Robot. Syst. 33(1), 1–23 (2002)

    Article  MATH  Google Scholar 

  15. Agah, F., Mehrandezh, M., Fenton, R.G., Benhabib, B.: On-line robotic interception planning using rendezvous-guidance technique. J. Intell. Robot. Syst.: Theory Appl. 40(1), 23–44 (2004)

    Article  Google Scholar 

  16. Kunwar, F., Benhabib, B.: Rendezvous-guidance trajectory planning for robotic dynamic obstacle avoidance and interception. IEEE Trans. Syst. Man Cybern. Part B 36(6), 1432–1441 (2006)

    Article  Google Scholar 

  17. Lin, C.L., Chen, Y.Y.: Design of advanced guidance law against high speed attacking targets. Proc. Natl. Sci. Counc. Repub. China, Part A 23(1), 60–74 (1999)

    Google Scholar 

  18. Aggarwal, R.K.: Optimal missile guidance for weaving targets. In: Proceedings of the Conference on Decision and Control. Kobe, Japan (1996)

  19. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  20. Baraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planner. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)

    Article  Google Scholar 

  21. Borenstein, J., Koren, Y.: The vector field histogram—fast obstacle avoidance for mobile robots. IEEE J. Robot. Autom. 7(3), 278–288 (1991)

    Article  Google Scholar 

  22. Laumond, J.P., Jacobs, P.E., Taix, M., Murray, R.M.: A motion planner for non-holonomic mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)

    Article  Google Scholar 

  23. Laumond, J.P.: Robot Motion Planning and Control. Springer Telos (1998)

  24. Simmons, R.: The curvature-velocity method for local obstacle avoidance. In: IEEE International Conference on Robotics and Automation, pp. 2275–2282. Minneapolis, MN (1996)

  25. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  26. Feiten, W., Bauer, R., Lawitzky, G.: Robust obstacle avoidance in unknown and cramped environments. In: IEEE International Conference on Robotics and Automation, pp. 2412–241 (1994)

  27. Zhang, F., O’Conner, A., Luebke, D., Krishnaprasad, P.S.: The experimental study of curvature-based control laws for obstacle avoidance. In: IEEE Conference on Robotics and Automation, pp. 3849–3854. New Orleans (2004)

  28. Ko, N.Y., Simmons, R.G.: The lane-curvature method for local obstacle avoidance. In: IEEE Conference on Intelligent Robots and Systems, pp. 1615–1621. Victoria, Canada (1998)

  29. Ogren, P., Leonard, N.E.: A tractable convergent dynamic window approach to obstacle avoidance. In: IEEE Conference on Intelligent Robots and Systems, pp. 595–600. Lausanne, Switzerland (2002)

  30. Hu, H., Brady, M.: A Bayesian approach to real-time obstacle avoidance for mobile robots. Auton. Robots 1, 69–92 (1994)

    Article  Google Scholar 

  31. Fox, D., Burgard., W., Thrun, S., Cremers, A.: A hybrid collision avoidance method for mobile robots. In: IEEE Conference on Robotics and Automation, pp. 1238–1243 (1998)

  32. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 711–727 (1998)

    Article  Google Scholar 

  33. Large, F., Sekhavat, S., Shiller, Z., Laugier, C.: Towards real-time global motion planning in a dynamic environment using the NLVO concept. In: IEEE Conference on Intelligent Robots and Systems, pp. 607–612. Lausanne, Switzerland (2002)

  34. Li, Z., Canny, J., Heinzinger, G.: Robot motion planning with non-holonomic constraints. In: 5th International Symposium of Robotics Research, pp. 343–350. Tokyo (1989)

  35. Rouchen, P., Fliess, M., levine, J., Martin, P.: Flatness and motion planning: the car with n trailers. In: European Control Conference, pp. 1518–1522 (1992)

  36. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Automat. Contr. 38, 700–716 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  37. Monaco, S., Normand-Cyrot, D.: An introduction to motion planning under multirate digital control. In: IEEE Conference on Decision and Control, pp. 1780–1785. Tucson, Arizona (1992)

  38. Elbury, D., Murray, R.M., Sashy, S.S.: Trajectory generation for the n-trailer problem using goursat normal form. IEEE Trans. Automat. Contr. 40, 802–819 (1995)

    Article  Google Scholar 

  39. Fernandes, C., Gurvits, L., Li, Z.: Near-optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Trans. Automat. Contr. 39, 450–463 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Balkcom, D.J., Mason, M.T.: Extrema1 trajectories for bounded velocity differential drive robots. In: IEEE International Conference on Robotics and Automation, pp. 1747–1752. California (2000)

  41. Balkcom, D.J., Mason, M.T.: Extrema1 trajectories for bounded velocity mobile robots. IEEE International Conference on Robotics and Automation, pp. 1747–1752. Washington, DC (2002)

  42. Sundar, S., Shiller, Z.: Optimal obstacle avoidance based on the Hamilton–Jacobi–Bellman equation. IEEE Trans. Robot. Autom. 13, 305–310 (1997)

    Article  Google Scholar 

  43. Bryson, A.E., Ho, Y.-C.: Applied optimal control, 2nd edn. Hemisphere Publishing Corporation, New York, NY (1975)

    Google Scholar 

  44. Qu, Z., Cloutier, J.R.: A new suboptimal control design for cascaded nonlinear systems. Optim. Control Appl. Methods 23, 303–328 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  45. Laumond, J.-P., Jacobs, P.E., Taix, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom. 10, 577–593 (1994)

    Article  Google Scholar 

  46. Reeds, J.A., Shepp, R.A.: Optimal paths for a car that goes both forward and backwards. Pac. J. Math. 145, 367–393 (1990)

    MathSciNet  Google Scholar 

  47. Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans. Syst. Man Cybern., Part A Syst. Humans 28(5), 562–574 (1998)

    Article  Google Scholar 

  48. Kelly, A., Stentz, A.: Rough terrain autonomous mobility. Auton. Robots 5(2), 129–198 (1998)

    Article  Google Scholar 

  49. Seraji, H., Howard, A.: Behavior-based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Trans. Robot. Autom. 18(3), 308–321 (2002)

    Article  Google Scholar 

  50. Langer, D., et al.: A behavior-based system for off-road navigation. IEEE Trans. Robot. Autom. 10(6), 776–783 (1994)

    Article  Google Scholar 

  51. Singh, S., et al.: Recent progress in local and global traversability for planetary rovers. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1194–1200 (2000)

  52. Lacroix, S. et al.: Autonomous rover navigation on unknown terrains: functions and integration. Int. J. Robot. Res. 21(10–11), 917–942 (2002)

    Article  Google Scholar 

  53. Gennery, D.B.: Traversability analysis and path planning for a planetary rover. Auton. Robots 6(2), 131–146 (1999)

    Article  Google Scholar 

  54. Haddad, H., et al.: Reactive navigation in outdoor environments using potential fields. In: IEEE Conference on Robotics and Automation, pp. 1232–1237 (1998)

  55. Cang, Y., Borenstein, J.: A method for mobile robot navigation on rough terrain. In: IEEE Conference on Robotics and Automation, pp. 1194–1200. Barcelona, Spain (2004)

  56. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: IEEE Conference on Robotics and Automation, pp. 1398–1404 (1991)

  57. Gennery, D.B.: Traversability analysis and path planning for a planetary rover. Auton. Robots 6(2), 131–146 (1999)

    Article  Google Scholar 

  58. Bose, C.B., Amir, J.: Design of fiducials for accurate registration using machine vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 1196–1200 (1990)

    Article  Google Scholar 

  59. Bourgin, D.: Color Space FAQ. http://www.neuro.sfc.keio.ac.jp/~aly/polygon/info/color-space-faq.html. Accessed August 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beno Benhabib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunwar, F., Sheridan, P.K. & Benhabib, B. Predictive Guidance-Based Navigation for Mobile Robots: A Novel Strategy for Target Interception on Realistic Terrains. J Intell Robot Syst 59, 367–398 (2010). https://doi.org/10.1007/s10846-010-9401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9401-3

Keywords

Navigation