Skip to main content
Log in

Multidisciplinary Design Optimization Framework for the Pre Design Stage

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Presented is a novel framework for performing flexible computational design studies at preliminary design stage. It incorporates a workflow management device (WMD) and a number of advanced numerical treatments, including multi-objective optimization, sensitivity analysis and uncertainty management with emphasis on design robustness. The WMD enables the designer to build, understand, manipulate and share complex processes and studies. Results obtained after applying the WMD on various test cases, showed a significant reduction of the iterations required for the convergence of the computational system. The tests results also demonstrated the capabilities of the advanced treatments as follows:

  • The novel procedure for global multi-objective optimization has the unique ability to generate well-distributed Pareto points on both local and global Pareto fronts simultaneously.

  • The global sensitivity analysis procedure is able to identify input variables whose range of variation does not have significant effect on the objectives and constraints. It was demonstrated that fixing such variables can greatly reduce the computational time while retaining a satisfactory quality of the resulting Pareto front.

  • The novel derivative-free method for uncertainty propagation, which was proposed for enabling multi-objective robust optimization, delivers a higher accuracy compared to the one based on function linearization, without altering significantly the cost of the single optimization step.

The work demonstrated for the first time that such capabilities can be used in a coordinated way to enhance the efficiency of the computational process and the effectiveness of the decision making at preliminary design stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balachandran, L.K., Fantini, P.F., Guenov, M.D.: Computational process management for aircraft conceptual design. In: 7th AIAA Aviation Technology, Integration and Operations Conference (ATIO). Belfast (2007)

  2. Balachandran, L.K.: Computational Workflow Management for Conceptual Design of Complex Systems: An Air-Vehicle Design Perspective. PhD Thesis, Cranfield University, Cranfield, UK (2007)

    Google Scholar 

  3. Chen, W., Allen, J.: A procedure for robust design: minimizing variations caused by noise factors and control factors. J. Mech. Des. 118(4), 478–493 (1996). doi:10.1115/1.2826915

    Article  Google Scholar 

  4. Cukier, R.I., Levine, H.B., Shuler, K.E.: Non-linear sensitivity analysis of multi-parameter model systems. J. Comput. Phys. 26(1), 1–42 (1978). doi:10.1016/0021-9991(78)90097-9

    Article  MATH  MathSciNet  Google Scholar 

  5. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998). doi:10.1137/S1052623496307510

    Article  MATH  MathSciNet  Google Scholar 

  6. Das, I.: An improved technique for choosing parameters for pareto surface generation using normal-boundary intersection. In: Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization WCSMO-3. Buffalo, NY (1999)

  7. Fantini, P.: Effective Multiobjective MDO for Conceptual Design - An Aircraft Design Perspective. PhD Thesis, Cranfield University, Cranfield, UK (2007)

    Google Scholar 

  8. Fantini, P., Balachandran, L.K., Guenov, M.D.: Computational intelligence in multi disciplinary optimization at conceptual design stage. In: Proceedings of the First International Conference on Multidisciplinary Design Optimization and Applications. Besancon, France (2007)

  9. Guenov, M.D., Libish, T.D., Lockett, H.: Computational design process modelling. In: Proceedings of 25th International Council of the Aeronautical Sciences. Hamburg, Germany (2006)

  10. Guenov, M.D., Utyuzhnikov, S.V., Fantini, P.: Application of the modified physical programming method to generating the entire pareto frontier in multiobjective optimization. In: Proceedings of EUROGEN 2005. Munich, Germany (2005)

  11. Maginot, J.: Sensitivity Analysis for Multidisciplinary Design Optimization. PhD Thesis, Cranfield University, Cranfield, UK (2007)

    Google Scholar 

  12. Maginot, J., Guenov, M.D., Fantini, P., Padulo, M.: A method for assisting the study of Pareto solutions in multi-objective optimization. In: Proceedings of the 7th AIAA/ATIO Conference. Belfast, Northern Ireland (2007)

    Google Scholar 

  13. Mattison, C.A., Mullur, A.A., Messac, A.: Minimal representation of multiobjective design space using smart pareto filter. In: Proceeding of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta, GA (2002)

  14. Messac, A., Mattson, C.A.: Generating well-distributed sets of pareto points for engineering design using physical programming. Optim. Eng. 3(4), 431–450 (2002)

    Article  MATH  Google Scholar 

  15. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint method for generating the pareto frontier. Struct. Multidiscipl. Optim. 25(2), 86–98 (2003)

    Article  MathSciNet  Google Scholar 

  16. Messac, A., Mattson, C.: Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA J. 42(10), 2101–2111 (2004). doi:10.2514/1.8977

    Article  Google Scholar 

  17. Messac, A.: Physical programming: effective optimization for computational design. AIAA J. 34(1), 149–158 (1996). doi:10.2514/3.13035

    Article  MATH  Google Scholar 

  18. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)

    MATH  Google Scholar 

  19. Murphy, T.E., Tsui, K.L., Allen, J.K.: A review of robust design methods for multiple responses. Res. Eng. Des. 16, 118–132 (2005). doi:10.1007/s00163-005-0004-0

    Article  Google Scholar 

  20. Padulo, M., Campobasso, M.S., Guenov, M.D.: Comparative analysis of uncertainty propagation methods for robust engineering design. In: Proceedings of the International Conference on Engineering Design ICED07. Paris (2007)

  21. Park, G.J., Lee, T.H., Hwang, K.H.: Robust design: an overview. AIAA J. 44(1), 181–191 (2006). doi:10.2514/1.13639

    Article  Google Scholar 

  22. Saltelli, A., Chan, K., Scott, M.: Sensitivity Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  23. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley, Chichester (2004)

    MATH  Google Scholar 

  24. Saltelli, A., Bolado, R.: An alternative way to compute Fourier Amplitude Sensitivity Test (FAST). Comput. Stat. Data Anal. 26(4), 445–460 (1998). doi:10.1016/S0167-9473(97)00043-1

    Article  MATH  Google Scholar 

  25. Sobol’, I.M.: Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exper. 1(4), 407–414 (1993)

    MathSciNet  Google Scholar 

  26. Sobol’, I.M.: Global sensitivity indices for non-linear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001). doi:10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  Google Scholar 

  27. Utyuzhnikov, S.V., Fantini, P., Guenov, M.D.: Numerical method for generating the entire Pareto frontier in multiobjective optimization. In: Proceedings of EUROGEN 2005, pp. 12–14. Munich, Germany (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Guenov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guenov, M., Fantini, P., Balachandran, L. et al. Multidisciplinary Design Optimization Framework for the Pre Design Stage. J Intell Robot Syst 59, 223–240 (2010). https://doi.org/10.1007/s10846-010-9397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9397-8

Keywords

Navigation