Skip to main content
Log in

Sliding Mode Control with Adaptive Fuzzy Dead-Zone Compensation of an Electro-hydraulic Servo-System

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as dead-zone due to valve spool overlap. This work describes the development of an adaptive fuzzy sliding mode controller for an electro-hydraulic system with unknown dead-zone. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov stability theory and Barbalat’s lemma. Numerical results are presented in order to demonstrate the control system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan, C., Pan, S.: Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters. IEEE Trans. Control Syst. Technol. 16(3), 434–445 (2008)

    Article  Google Scholar 

  2. Guan, C., Pan, S.: Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Eng. Pract. 16, 1275–1284 (2008)

    Article  Google Scholar 

  3. Yanada, H., Furuta, K.: Adaptive control of an electrohydraulic servo system utilizing online estimate of its natural frequency. Mechatronics 17, 337–343 (2007)

    Article  Google Scholar 

  4. Yao, B., Bu, F., Reedy, J., Chiu, G.T.C.: Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans. Mechatronics 5(1), 79–91 (2000)

    Article  Google Scholar 

  5. Mihajlov, M., Nikolić, V., Antić, D.: Position control of an electro-hydraulic servo system using sliding mode control enhanced by fuzzy PI controller. Facta Univ. (Mech. Eng.) 1(9), 1217–1230 (2002)

    Google Scholar 

  6. Bonchis, A., Corke, P.I., Rye, D.C., Ha, Q.P.: Variable structure methods in hydraulic servo systems control. Automatica 37, 589–895 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu, Y., Handroos, H.: Sliding mode control for a class of hydraulic position servo. Mechatronics 9, 111–123 (1999)

    Article  Google Scholar 

  8. Niksefat, N., Sepehri, N.: Design and experimental evaluation of a robust force controller for an electro-hydraulic actuator via quantitative feedback theory. Control Eng. Pract. 8, 1335–1345 (2000)

    Article  Google Scholar 

  9. Liu, G.P., Daley, S.: Optimal-tuning nonlinear PID control of hydraulic systems. Control Eng. Pract. 8, 1045–1053 (2000)

    Article  Google Scholar 

  10. Knohl, T., Unbehauen, H.: Adaptive position control of electrohydraulic servo systems using ANN. Mechatronics 10, 127–143 (2000)

    Article  Google Scholar 

  11. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Adaptive fuzzy control of electrohydraulic servosystems. In: CONEM 2006—Proceedings of the IV National Congress of Mechanical Engineering. Recife, Brazil (2006)

    Google Scholar 

  12. Tao, G., Kokotović, P.V.: Adaptive control of plants with unknow dead-zones. IEEE Trans. Autom. Control 39(1), 59–68 (1994)

    Article  MATH  Google Scholar 

  13. Kim, J.H., Park, J.H., Lee, S.W., Chong, E.K.P.: A two-layered fuzzy logic controller for systems with deadzones. IEEE Trans. Ind. Electron. 41(2), 155–162 (1994)

    Article  Google Scholar 

  14. Oh, S.Y., Park, D.J.: Design of new adaptive fuzzy logic controller for nonlinear plants with unknown or time-varying dead zones. IEEE Trans. Fuzzy Syst. 6(4), 482–491 (1998)

    Article  Google Scholar 

  15. S̆elmić, R.R., Lewis, F.L.: Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 45(4), 602–613 (2000)

    Article  Google Scholar 

  16. Tsai, C.H., Chuang, H.T.: Deadzone compensation based on constrained RBF neural network. J. Frankl. Inst. 341, 361–374 (2004)

    Article  MATH  Google Scholar 

  17. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51(3), 504–511 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lewis, F.L., Tim, W.K., Wang, L.Z., Li, Z.X.: Deadzone compensation in motion control systems using adaptive fuzzy logic control. IEEE Trans. Control Syst. Technol. 7(6), 731–742 (1999)

    Article  Google Scholar 

  19. Wang, X.S., Su, C.Y., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknow dead-zone. Automatica 40, 407–413 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ibrir, S., Xie, W.F., Su, C.Y.: Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica 43, 522–530 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang, T.P., Ge, S.S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43, 1021–1033 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Adaptive fuzzy sliding mode control of uncertain nonlinear systems with non-symmetric dead-zone. In: CBA 2008—Proceedings of the XVII Brazilian Conference on Automatica. Juiz de Fora, Brazil (2008)

    Google Scholar 

  23. Merritt, H.E.: Hydraulic Control Systems. Wiley, New York (1967)

    Google Scholar 

  24. Walters, R.: Hydraulic and Electro-hydraulic Servo Systems. Lliffe Books, London (1967)

    Google Scholar 

  25. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Adaptive fuzzy sliding mode control and its application to underwater robotic vehicles. In: ERMAC 2008—Proceedings of the VIII Regional Meeting on Applied and Computational Mathematics. Natal, Brazil (2008)

    Google Scholar 

  26. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56(8), 670–677 (2008)

    Article  Google Scholar 

  27. Bessa, W.M., De Paula, A.S., Savi, M.A.: Chaos control using an adaptive fuzzy sliding mode controller with application to a nonlinear pendulum. Chaos, Solitons Fractals (2009). doi:10.1016/j.chaos.2009.02.009

    Google Scholar 

  28. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jersey (2001)

    Google Scholar 

  29. Slotine, J.J.E.: Sliding controller design for nonlinear systems. Int. J. Control 40(2), 421–434 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bessa, W.M.: Some remarks on the boundedness and convergence properties of smooth sliding mode controllers. Int. J. Autom. Comput. 6(2), 154–158 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace M. Bessa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessa, W.M., Dutra, M.S. & Kreuzer, E. Sliding Mode Control with Adaptive Fuzzy Dead-Zone Compensation of an Electro-hydraulic Servo-System. J Intell Robot Syst 58, 3–16 (2010). https://doi.org/10.1007/s10846-009-9342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9342-x

Keywords

Mathematics Subject Classifications (2000)

Navigation