Skip to main content
Log in

A Neuro-Sliding Mode Control Scheme for Constrained Robots with Uncertain Jacobian

Category: Robot Control (3)

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The joint robot control requires to map desired cartesian tasks into desired joint trajectories, by using the ill-posed inverse kinematics mapping. In order to avoid inverse kinematics, the control problem is formulated directly in task space to gives rise to cartesian robot control. In addition, when the robot is constrained due to its kinematic mappings yields a stiff system and an additional complexity arises to implement cartesian control for constrained robots. In this paper, an alternative approach is proposed to guarantee global convergence of force and position cartesian tracking errors under the assumption that the jacobian is not exactly known. A neuro-sliding mode controller is presented, where a small size adaptive neural network compensates approximately for the inverse dynamics and an inner control loop induces second order sliding modes to guarantee tracking. The sliding mode variable tunes the online adaptation of the weights. A passivity analysis yields the energy Lyapunov function to prove boundedness of all closed-loop signals and variable structure control theory is used to finally conclude convergence of position and force tracking errors. Experimental results are provided to visualize the expected performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R.J., Spong, M.: Hybrid impedance control of robotic manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1073–1080. IEEE, Piscataway (1987)

    Google Scholar 

  2. Arimoto, S.: Control Theory of Non-linear Mechanical Systems. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  3. Barambones, O., Etxebarria, V.: Robust neural network for robotic manipulators. Automatica 38, 235–242 (2002)

    Article  MATH  Google Scholar 

  4. Cheah, C.C., Kawamura, S., Arimoto, S.: Feedback control for robotics manipulator with uncertain Jacobian matrix. J. Robot. Syst. 16(2), 120–134 (1999)

    Article  MathSciNet  Google Scholar 

  5. Cheah, C.C., Kawamura, S., Arimoto, S., Lee, K.: A tuning for task-space feedback control of robot with uncertain Jacobian matrix. IEEE Trans. Automat. Contr. 46, 1313–1318 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheah, C.C., Kawamura, S., Arimoto, S.: Stability of hybrid position and force control for robotic manipulator with kinematics and dynamics uncertainties. Automatica 29, 847–855 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cheah, C.C., Hirano M., Kawamura, S., Arimoto, S.: Approximate Jacobian control with task-space damping for robot manipulators. IEEE Trans. Automat. Contr. 19(5), 752–757 (2004)

    Article  MathSciNet  Google Scholar 

  8. Cheah, C.C., Slotine, J.: Adaptive tracking control for robots with unknown kinematics and dynamics properties. Int. J. Rob. Res. 25(3), 283–296 (2006)

    Article  Google Scholar 

  9. Cheah, C.C.: On duality of inverse Jacobian and transpose Jacobian in task. Space regulation of robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2571–2576. IEEE, Piscataway (2006)

    Google Scholar 

  10. Cheah, C.C.: Inverse Jacobian regulator with gravity compensation: stability and experiment. IEEE Trans. Robot. 21(4), 741–747 (2005)

    Article  Google Scholar 

  11. Cotter, N.E.: The Stone-Weierstrass theorem and its application to neural network. IEEE Trans. Neural Netw. 1(4), 290–295 (1990)

    Article  MathSciNet  Google Scholar 

  12. Ertugrul, M., Kaynak, O.: Neuro sliding mode control of robotic manipulators. Mechatronics 10, 239–263 (2000)

    Article  Google Scholar 

  13. Galicki, M.: Adaptive path-constrained control of a robotic manipulator in a task space. Robotica 25, 103–112 (2007)

    Article  Google Scholar 

  14. Ge, S.S., Hang, C.C.: Structural network modeling and control of rigid body robots. IEEE Trans. Robot. Autom. 14(5), 823–827 (1998)

    Article  Google Scholar 

  15. Hogan, N.: Impedance control: an approach to manipulations, parts 1, 2 and 3. J. Dyn. Syst. Meas. Control. 107, 1–24 (1985)

    MATH  Google Scholar 

  16. Jung, S., Hsia, T.C.: On an effective design approach of cartesian space neural network control for robot manipulators. Robotica 15(3), 305–312 (1997)

    Article  Google Scholar 

  17. Jung, S., Hsia, T.C.: On robust impedance force control of robot manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2057–2062. IEEE, Piscataway (1997)

    Google Scholar 

  18. Huang, C.Q., Wang, X.G., Wang, Z.G.: A class of transpose Jacobian-based NPID regulators for robot manipulators with uncertain kinematics. J. Robot. Syst. 11 527–539 (2002)

    Article  Google Scholar 

  19. Jager, B.: Adaptive robot control with second order sliding component. In: 13th Triennial World Congress, pp. 271–276, San Francisco, July 1996

  20. Karakasoglu, A., Sundareshan, M.: A recurrent neural network-based adaptive variable structure model following control of robotic manipulators. Automatica 31(10), 1495–1507 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Khatib, O.: An unified approach for motion and force control of robot manipulators: the operational space. IEEE Trans. Robot. Autom. 3, 43–53 (1987)

    Article  Google Scholar 

  22. Jung, S., Hsia, T.C.: On an effective design approach of cartesian space neural network control for robot manipulators. Robotica 15(3), 305–312 (1997)

    Article  Google Scholar 

  23. Kulawski, G., Hsu, C.F.: Neural network-based adaptive control for induction servomotor drive system. IEEE Trans. Ind. Electron. 49, 115–123 (2002)

    Article  Google Scholar 

  24. Lewis, F.L., Abdallaah, C.T.: Control of Robot Manipulators. Macmillan, New York (1994)

    Google Scholar 

  25. Lewis, F.L., Yessildirek, A., Liu, K.: Multilayer neural net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 6(3), 703–715 (1998)

    Article  Google Scholar 

  26. Kwan, C.M., Yessildirek, A, Lewis, F.L.: Robust force/motion control of constrained robots using neural network. J. Robot. Syst. 16(12), 697–714 (1999)

    Article  MATH  Google Scholar 

  27. Liu, C., Cheah, C.C., Slotine, J.: Adaptive jacobian tracking control of rigid-link electrically driven robots based on visual task-space information. Automatica 42, 1491–1501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. McClamroch, N.H., Wang, D.: Feedback stabilization and tracking of constrained robots. IEEE Trans. Automat. Contr. 33, 419–426 (1998)

    Article  MathSciNet  Google Scholar 

  29. Maaβ, R., Zahn, V., Eckiller, R.: Neural force/position control in cartesian space for a 6 dof industrial robot: concept and first result. In: IEEE Proc. Int. Conf. on Neural Network, ICNN97, Houston, June 1997

  30. Parra-Vega, V., Arimoto, S.: A passivity-based adaptive sliding mode position-force control for robot manipulators. Int. J. Adapt. Control Signal Process. 10, 365–377 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Parra-Vega, V., Arimoto, S., Liu, Y.H., Hirzinger, G., Akella, P.: Dynamic sliding PID control for tracking of robot manipulators: theory and experiments. IEEE Trans. Robot. Autom. 19(6), 976–985 (2003)

    Article  Google Scholar 

  32. Parra-Vega, V., Garcia-Rodriguez, R., De la Rosa-Jimenez, L.: Cartesian neuro-sliding PID control of robots for tracking under inverse Jacobian uncertainty. In: 2nd Int. Conf. on Industrial Informatics, Berlin, 24–26 June 2004

  33. Slotine, J., Li, W.: Adaptive strategies in constrained manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 595–601. IEEE, Piscataway (1987)

    Google Scholar 

  34. Stepanenko Y., Cao, Y., Su, A.C.: Variable structure control of robotic manipulator with PID sliding surfaces. Int. J. Robust Nonlinear Control 8, 79–90 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yoshikawa, T.: Force control of robot manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 220–226. IEEE, Piscataway (2000)

    Google Scholar 

  36. Young, K.D., Utkin, V., Ozguner, U.: Control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7, 328–342 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. García-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Rodríguez, R., Parra-Vega, V. A Neuro-Sliding Mode Control Scheme for Constrained Robots with Uncertain Jacobian. J Intell Robot Syst 54, 689–708 (2009). https://doi.org/10.1007/s10846-008-9283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9283-9

Keywords

Navigation