Skip to main content
Log in

Intelligent Robust Controller Design for a Micro-actuator

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this article the design of an intelligent robust controller for a micro-actuator is presented. The μ-actuator is composed of a micro-capacitor, whose one plate is clamped while its other flexible plate’s motion is constrained by hinges acting as a combination of springs and dashpots. The distance of the plates is varied by the applied voltage between them. The dynamics of the plate’s rigid-body motion results in an unstable, nonlinear system. The control structure is constructed from: (a) a feedforward controller which stabilizes the micro-actuator around its nominal operating point, (b) a robust PID controller with its gains tuned via the utilization of Linear Matrix Inequalities (LMIs), and (c) an intelligent prefilter which shapes appropriately the reference signal. The resulting overall control scheme is applied to the non-linear model of the μ-actuator where simulation results are presented to prove the efficacy of the suggested scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyshevski, E.: Micro-electromechanical systems: motion control of micro-actuators. In: IEEE/ASME Transactions on Mechatronics Proceedings of the IEEE Conference on Decision and Control, Tampa, FL, 1998

  2. Menciassi, A., Eisinberg, A., Izzo, I., Dario, P.: From “macro” to “micro” manipulation: models and experiments. In: IEEE-ASME Transactions on Mechatronics, vol. 9, pp. 311–320 (2004)

  3. Chen, E., Dutton, R.W.: Electrostatic micromechanical actuator with extended range of travel. Journal of Microelectromechanical Systems 9, 321–328 (2000)

    Article  Google Scholar 

  4. Rocha, L.A., Cretu, E., Wolffenbuttel, R.F.: Using dynamic voltage drive in a parallel-plate electrostatic actuator for full-gap travel range and positioning. Journal of Microelectromechanical Systems 15, 69–83 (2006)

    Article  Google Scholar 

  5. Lu, M.S.C., Fedder, G.: Position control of parallel-plate microactuators for probe-based data storage. Journal of Microelectromechanical Systems 13, 759–769 (2004)

    Article  Google Scholar 

  6. Seeger, J.I., Boser, B.E.: Charge control of parallel-plate, electrostatic actuators and the tip-in instability. Journal of Microelectromechanical Systems 12, 656–671 (2003)

    Article  Google Scholar 

  7. Judy, J.W.: Microelectromechanical systems (MEMS): fabrication, design and +applications. Smart Mater. Struc. 10, 1115–1134 (2001)

    Article  Google Scholar 

  8. Chang, S.: Demonstration of robust micromachined jet technology and its application to realistic flow control problems. In: Journal of Mechanical Science and Technology, vol. 20, pp. 554–560 (2006)

  9. Agarwal, A., Sridharamurthy, S., Beebe, D., et al.: Programmable autonomous micromixers and micropumps. In: IEEE Journal of Microelectromechanical Systems, vol. 14, pp. 1409–1421 (2005)

  10. Ketsdever, A., Lee, R., Lilly, T.: Performance testing of a microfabricated propulsion system for nanosatellite applications. J. Micromechanics Microengineering 15, 2254–2263 (2005)

    Article  Google Scholar 

  11. Muller-Fiedler, R., Knoblauch, V.: Reliability aspects of microsensors and micromechatronic actuators for automotive applications.In: Journal of Microelectronics Realibility, vol. 43, pp. 1085–1097 (2003)

  12. Shao, Y., Dickensheets, D.L., Himmer, P.: 3-D MOEMS mirror for laser beam pointing and focus control. In: IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 528–535 (2004)

  13. Sitti, M.: Survey of nanomanipulation systems. In: IEEE-Nanotechnology Conference, Maui, HI, pp. 75–80, November 2001

  14. Ishihara, H., Arai, F., Fukuda, T.: Micro mechatronics and micro actuators. IEEE/ASME Trans. Mechatron. 1, 68–79 (March 1996)

    Article  Google Scholar 

  15. Lee, A., McConaghy, C., Sommargren, G., Krulevitch, P., Campbell, E.: Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry. Journal of Microelectromechanical Systems 12, 960–971 (December 2003)

    Article  Google Scholar 

  16. Liu, H., Lu, B., Ding, Y., Tang, Y., Li, D.: A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation. J. Micromechanics Microengineering 13, 295–299 (March 2003)

    Article  Google Scholar 

  17. Zhang, H., Laws, A., Bright, V., Gupta, K., Lee, Y.: MEMS variable-capacitor phase shifters Part I: loaded-line phase shifter. Int. J. RF Microw. Comput.-aided Eng. 13, 321–337 (July 2003)

    Article  Google Scholar 

  18. Bryzek, J., Abbott, H., Flannery, A., Cagle, D., Maitan, J.: Control issues for MEMS. In: Proceedings of the 2003 Conference on Decision and Control, pp. 3039–3047. Ventures, Fremont, CA (December 2003)

  19. Sung, L., Yongsang, Q.K., Dae-Gab, G.: Continuous gain scheduling control for a micro-positioning system: simple, robust and no overshoot response. Control Eng. Pract. 8, 133–138 (2000)

    Article  Google Scholar 

  20. Maithripala, D.H.S., Berg, J.M., Dayawansa, W.P.: Control of an electrostatic microelectromechanical system using static and dynamic output feedback. In: ASME’s Journal of Dynamic Systems, Measurement, and Control vol. 127, pp. 443–450 (2005)

  21. Maithripala, D.H.S., Berg, J.M., Dayawansa, W.P.: Capacitive stabilization of an electrostatic actuator: output feedback viewpoint. In: Proceedings of the 2003 American Control Conference, pp. 4653–4058. Denver, CO (4–6 June 2003)

  22. Hong, S., Varadan, V., Varadan, V.: Implementation of coupled mode optimal structural vibration control using approximated eigenfunctions. Smart Mater. Struc. 7, 63–71 (1998)

    Article  Google Scholar 

  23. Zarubinskaya, M., Horssen, W.: On the free vibrations of a rectangular plate with two opposite sides simply supported and the other sides attached to linear springs. Report 03–09, DELFT University of Technology (2003)

  24. Tzes, A., Nikolakopoulos, G., Dritsas, L., Koveos, Y.: Multi-parametric H control of a μ-actuator. In: Proceedings of the 2005 IFAC World Congress, Prague, Czech Republic. Article No. 4455, July 2005

  25. Ge, M., Chiu, M., Wang, Q.: Robust PID controller design via LMI approach. J. Process Control 12, 3–13 (2002)

    Article  MATH  Google Scholar 

  26. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA (1994)

    MATH  Google Scholar 

  27. VanAntwep, J., Braatz, R.: A tutorial on linear and bilinear matrix inequalities. J. Process Control 10, 363–385 (2000)

    Article  Google Scholar 

  28. Narendra, K., Balakrishnan, J., Ciliz, M.K.: Adaptation and learning using multiple models, switching and tuning. IEEE Control Syst. Mag. 15, 37–51 (1995)

    Article  Google Scholar 

  29. Cheng, Y., Yu, C.: Nonlinear process control using multiple models: relay feedback approach. Ind. Eng. Chem. 39, 420–431 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Tzes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vagia, M., Nikolakopoulos, G. & Tzes, A. Intelligent Robust Controller Design for a Micro-actuator. J Intell Robot Syst 47, 299–315 (2006). https://doi.org/10.1007/s10846-006-9070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9070-4

Key words

Navigation