Skip to main content
Log in

Fuzzy Modeling Based on Ordinary Fuzzy Partitions and Nearest Neighbor Clustering

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper a novel algorithm is proposed to train fuzzy models. The novelty of the contribution lies on the development of a nearest neighbor-clustering scheme, which is able to perform the structure identification and the model parameter estimation without taking into account any random initial guesses. This nearest neighbor-clustering search is based on defining ordinary fuzzy partitions in the input space, and produces a number of spherical-shaped fuzzy clusters. The number of these clusters provides the number of rules of the fuzzy model. The premise model parameters are obtained by projecting the spherical clusters on each axe. Relationally, the consequent model parameters are determined by applying the orthogonal least-squares algorithm. Finally, the above model parameters are fine tuned by using the gradient descent method. The whole scheme requires one-pass through the data set and therefore it is a fast procedure that is easy to implement. Simulation experiments verify the algorithm's efficiency with respect to its prediction performance, its initialization capabilities, and its speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.

    MATH  Google Scholar 

  2. Bourke, M. M. and Fisher, D. G.: Identification algorithms for fuzzy relational matrices, Part 2: Optimizing algorithms, Fuzzy Sets Systems 109 (2000), 321???341.

    Article  MATH  MathSciNet  Google Scholar 

  3. Box, G. E. P. and Jenkins, G. M.: Time Series Analysis, Forecasting and Control, Holden Day, San Francisco, CA, 1970.

    MATH  Google Scholar 

  4. Chen, J. Q., Xi, Y. G., and Zhang, Z. J.: A clustering algorithm for fuzzy model identification, Fuzzy Sets Systems 98 (1998), 319???329.

    Article  MathSciNet  Google Scholar 

  5. Chiu, S.: Fuzzy model identification based on cluster estimation, J. Intelligent Fuzzy Systems 2 (1994), 267???278.

    Article  MathSciNet  Google Scholar 

  6. Chiu, S.: Selecting input variables for fuzzy models, J. Intelligent Fuzzy Systems 4 (1996), 243???256.

    Google Scholar 

  7. Crowder, R. S.: Predicting the Mackey???Glass time series with cascade-correlation learning, in: D. Touretzky, G. Hinton and T. Senjowski (eds), Proc. of the 1990 Connectionist Models, Summer School, Carnegie Mellon University, 1990, pp. 117???123.

  8. De Souza, F. J., Vellasco, M. M. R., and Pacheco, M. A. C.: Hierarchical neuro-fuzzy quadtree models, Fuzzy Sets Systems 130 (2002), 189???205.

    Article  MATH  Google Scholar 

  9. Dickerson, J. A. and Kosko, B.: Fuzzy function approximation with ellipsoidal rules, IEEE Trans. Systems Man Cybernet. 4 (1996), 542???560.

    Google Scholar 

  10. Emani, M. R., Turksen, I. B., and Goldenberg, A. A.: Development of a systematic methodology of fuzzy logic modeling, IEEE Trans. Fuzzy Systems 6 (1998), 346???361.

    Article  Google Scholar 

  11. Evsukoff, A., Branco, A. C. S., and Galichet, S.: Structure identification and parameter optimization for nonlinear fuzzy modeling, Fuzzy Sets Systems 132(2) (2002), 173???188.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gomez-Skarmeta, A. F., Delgado, M., and Vila, M. A.: About the use of fuzzy clustering techniques for fuzzy model identification, Fuzzy Sets Systems 106 (1999), 179???188.

    Article  Google Scholar 

  13. Hirota, K. and Pedrycz, W.: Directional fuzzy clustering and its application to fuzzy modeling, Fuzzy Sets Systems 80 (1996), 315???326.

    Article  MathSciNet  Google Scholar 

  14. Jang, J. S. R.: ANFIS: Adaptive-Network-based Fuzzy Inference Systems, IEEE Trans. Systems Man Cybernet. 23(3) (1993), 665???685.

    Article  MathSciNet  Google Scholar 

  15. Kim, D.: Improving the fuzzy system performance by fuzzy system ensemble, Fuzzy Sets Systems 98 (1998), 43???56.

    Article  MathSciNet  Google Scholar 

  16. Kim, D. and Kim, C.: Forecasting time series with genetic fuzzy predictor ensemble, IEEE Trans. Fuzzy Systems 5(4) (1997), 523???535.

    Article  Google Scholar 

  17. Kim, E., Lee, H., Park, M., and Park, M.: A simply identified Sugeno-type fuzzy model via double clustering, Inform. Sci. 110 (1998), 25???39.

    Article  Google Scholar 

  18. Kim, E., Park, M., Ji, S., and Park, M.: A new approach to fuzzy modeling, IEEE Trans. Fuzzy Systems 5(3) (1997), 328???337.

    Article  Google Scholar 

  19. Kim, E., Park, M., Kim, S., and Park, M.: A transformed input???output domain approach to fuzzy modeling, IEEE Trans. Fuzzy Systems 6 (1998), 596???604.

    Article  Google Scholar 

  20. Klawonn, F. and Kruse, R.: Constructing a fuzzy controller from data, Fuzzy Sets Systems 85 (1997), 177???193.

    Article  MathSciNet  Google Scholar 

  21. Kroll, A.: Identification of functional fuzzy models using multidimensional reference fuzzy sets, Fuzzy Sets Systems 80 (1996), 149???158.

    Article  MathSciNet  Google Scholar 

  22. Kukolj, D.: Design of adaptive Takagi???Sugeno???Kang fuzzy models, Appl. Soft Computing 2 (2002), 89???103.

    Article  Google Scholar 

  23. Lee, C. C.: Fuzzy logic in control systems: Fuzzy logic controller ??? part 1, IEEE Trans. Systems Man Cybernet. 20(2) (1990), 404???418.

    Article  MATH  MathSciNet  Google Scholar 

  24. Lee, C. C.: Fuzzy logic in control systems: fuzzy logic controller ??? part 2, IEEE Trans. Systems Man Cybernet. 20(2) (1990), 419???435.

    Article  MATH  Google Scholar 

  25. Leung, C. S. and Chan, L. W.: Dual extended Kalman filtering in recurrent neural networks, Neural Networks 16 (2003), 223???239.

    Article  PubMed  Google Scholar 

  26. Lin, Y. and Cunningham, G. A.: A new approach to fuzzy-neural modeling, IEEE Trans. Fuzzy Systems 3 (1995), 190???197.

    Article  Google Scholar 

  27. Nakamori, Y. and Ryoke, M.: Identification of fuzzy prediction models through hyper-ellipsoidal clustering, IEEE Trans. Systems Man Cybernet. 24(8) (1994), 1153???1173.

    Article  Google Scholar 

  28. Nauck, D. and Kruse, R.: Neuro-fuzzy systems for function approximation, Faculty of Computer Science, Neural and Fuzzy Systems, Otto-Von-Guericke University of Magdeburg.

  29. Nie, J.: Fuzzy control of multivariable nonlinear servomechanisms with explicit decoupling scheme, IEEE Trans. Fuzzy Systems 5(2) (1997), 304???311.

    Article  MathSciNet  Google Scholar 

  30. Nie, J. and Linkens, D.: Fuzzy-Neural Control: Principles, Algorithms and Applications, Prentice-Hall, Englewood-Cliffs, NJ, 1995.

    MATH  Google Scholar 

  31. Nozaki, K., Ishibuchi, H., and Tanaka, H.: A simple but powerful method for generating fuzzy rules from numerical data, Fuzzy Sets Systems 86 (1997), 251???270.

    Article  Google Scholar 

  32. Oh, S. K. and Pedrycz, W.: Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems, Fuzzy Sets Systems 115(2) (2000), 205???230.

    Article  MathSciNet  MATH  Google Scholar 

  33. Pedrycz, W.: An identification algorithm in fuzzy relational systems, Fuzzy Sets Systems 13 (1984), 153???167.

    Article  MATH  MathSciNet  Google Scholar 

  34. Pedrycz, W.: Fuzzy Control and Fuzzy Systems, Research Studies Press, New York, 1993.

    MATH  Google Scholar 

  35. Setnes, M.: Supervised fuzzy clustering for rule extraction, IEEE Trans. Fuzzy Systems 8(4) (2000), 416???424.

    Article  Google Scholar 

  36. Sugeno, M. and Kang, G. T.: Structure identification of a fuzzy model, Fuzzy Sets Systems 28 (1988), 15???33.

    Article  MATH  MathSciNet  Google Scholar 

  37. Sugeno, M. and Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Systems 1(2) (1993), 7???31.

    Article  Google Scholar 

  38. Takagi, T. and Sugeno, M.: Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Systems Man Cybernet. 15(1) (1985), 116???132.

    MATH  Google Scholar 

  39. Tan, S. and Yu, Y.: Adaptive fuzzy modeling of nonlinear dynamical systems, Automatica 32(4) (1996), 637???643.

    Article  MathSciNet  MATH  Google Scholar 

  40. Tong, R. M.: The evaluation of fuzzy models derived from experimental data, Fuzzy Sets Systems 4 (1980), 1???12.

    Article  MATH  Google Scholar 

  41. Xu, C. W. and Lu, Y. Z.: Fuzzy model identification and self-learning for dynamic systems, IEEE Trans. Systems Man Cybernet. 17(4) (1987), 683???689.

    Article  MATH  Google Scholar 

  42. Wang, L. X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  43. Wang, L. X. and Mendel, J. M.: Generating fuzzy rules from numerical data with applications, IEEE Trans. Systems Man Cybernet. 22(6) (1992), 1414???1427.

    Article  MathSciNet  Google Scholar 

  44. Wang, L. X. and Mendel, J. M.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning, IEEE Trans. Neural Networks 3(5) (1992), 807???814.

    Article  Google Scholar 

  45. Wang, Y., Rong, G., and Wang, S.: Hybrid fuzzy modeling of chemical processes, Fuzzy Sets Systems 130 (2002), 265???275.

    Article  MathSciNet  MATH  Google Scholar 

  46. Wong, C. C. and Her, S. M.: A self-generating method for fuzzy system design, Fuzzy Sets Systems 103 (1999), 13???25.

    Article  Google Scholar 

  47. Wong, C. H., Shah, S. L., and Fisher, D. G.: Fuzzy relational predictive identification, Fuzzy Sets Systems 113 (2000), 417???426.

    Article  MATH  MathSciNet  Google Scholar 

  48. Yager, R. and Filev, D.: Generation of fuzzy rules by mountain method, J. Intelligent Fuzzy Systems 2 (1994), 209???219.

    Google Scholar 

  49. Zadeh, L. A.: Outline of a new approach to the analysis of complex systems, IEEE Trans. Systems Man Cybernet. 1 (1973), 28???44.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Tsekouras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsekouras, G.E. Fuzzy Modeling Based on Ordinary Fuzzy Partitions and Nearest Neighbor Clustering. J Intell Robot Syst 43, 255–282 (2005). https://doi.org/10.1007/s10846-005-4514-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-005-4514-9

Keywords

Navigation