Skip to main content
Log in

Multiagent-Based Multi-team Formation Control for Mobile Robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In the field of formation control, researchers generally control multiple robots in only one team, and little research focuses on multi-team formation control. In this paper, we propose an architecture, called Virtual Operator MultiAgent System (VOMAS), to perform formation control for multiple teams of mobile robots with the capabilities and advantages of scalability and autonomy. VOMAS is a hybrid architecture with two main agents. The virtual operator agent handles high level missions and team control, and the robot agent deals with low level formation control. The virtual operator uses four basic services including join, remove, split, and merge requests to perform multi-team control. A new robot can be easily added to a team by cloning a new virtual operator to control it. The robot agent uses a simple formation representation method to show formation to a large number of robots, and it uses the concept of potential field and behavior-based control to perform kinematic control to keep formation both in holonomic and nonholonomic mobile robots. In addition, we also test the stability, robustness, and uncertainty in the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, H., Oasa, Y., Suzuki, I., and Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility, IEEE Trans. Robotics Automat. 15(5) (1999), 818–828.

    Google Scholar 

  2. Arai, T., Pagello, E., and Parker, L. E.: Guest editorial: Advances in multirobot systems, IEEE Trans. Robotics Automat. 18(5) (2002), 655–661.

    Google Scholar 

  3. Arkin, R. C.: Behavior-Based Robotics, MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  4. Arkin, R. C. and Balch, T.: AuRA: Principles and practice in review, J. Experimental Theoret. Artificial Intelligence 9(2) (1997), 175–188.

    Google Scholar 

  5. Balch, T. and Arkin, R. C.: Behavior-based formation control for multirobot teams, IEEE Trans. Robotics Automat. 14(6) (1998), 926–939.

    Google Scholar 

  6. Balch, T. and Hybinette, M.: Social potentials for scalable multi-robot formations, in: IEEE Internat. Conf. on Robotics and Automation (ICRA), 2000.

  7. Barfoot, T. D., Clark, C. M., Rock, S. M., and D’Eleuterio, G. M. T.: Kinematic path-planning for formations of mobile robots with a nonholonomic constraint, in: Proc. of IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems, 2002, pp. 2819–2824.

  8. Beard, R. W., Lawton, J., and Hadaegh, F. Y.: A coordination architecture for spacecraft formation control, IEEE Trans. Control Systems Technol. 9(6) (2001), 777–790.

    Google Scholar 

  9. Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D., and Slack, M.: Experiences with an architecture for intelligent, reactive agents, J. Experimental Theoret. Artificial Intelligence 9(1) (1997).

  10. Chio, T.-S. and Tarn, T.-H.: Rules and control strategies of multi-robot team moving in hierarchical formation, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 2003, pp. 2701–2706.

  11. Das, A. K., Fierro, P., Kumar, V., Ostrowski, J. P., Spletzer, J., and Taylor, C. J.: A vision-based formation control framework, IEEE Trans. Robotics Automat. 18(5) (2002), 813–825.

    Google Scholar 

  12. Desai, J. P.: A graph theoretic approach for modeling mobile robot team formations, J. Robotic Systems 19(11) (2002), 511–525.

    Google Scholar 

  13. Desai, J. P., Ostrowski, J. P., and Kumar, V.: Modeling and control of formations of nonholonomic mobile robots, IEEE Trans. Robotics Automat. 17(6) (2001), 905–908.

    Google Scholar 

  14. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison-Wesley, New York, 1999.

    Google Scholar 

  15. FIPA: http://www.fipa.org/.

  16. Fredslund, J. and Mataric, M. J.: A general algorithm for robot formations using local sensing and minimal communication, IEEE Trans. Robotics Automat. 18(5) (2002), 837–846.

    Google Scholar 

  17. Ge, S. S., Fua, C.-H., and Liew, W.-M.: Swarm formationsl using the general formation potential function, in: Proc. of IEEE Conf. on Robotics, Automation, and Mechatronics, 2004, pp. 655–660.

  18. Hsu, H. C.-H. and Liu, A.: Multi-agent based formation control using a simple representation, in: Proc. of the IEEE Internat. Conf. on Networking, Sensing and Control, 2004, pp. 276–281.

  19. Hsu, H. C.-H. and Liu, A.: Platoon lane change maneuvers for automated highway systems, in: Proc. of the IEEE Conf. on Robotics, Automation and Mechatronics, 2004, pp. 780–785.

  20. JADE: JADE Programmer’s Guide, http://jade.tilab.com/, 2003.

  21. Lange, D. and Oshima, M.: Programming and Deploying Java Mobile Agents with Aglets, Addison-Wesley, Reading, MA, 1998.

    Google Scholar 

  22. Laumond, J.-P., Jacobs, P. E., Taix, M., and Murray, R. M.: A motion planner for nonholonomic mobile robots, IEEE Trans. Robotics Automat. 10(5) (1994), 577–593.

    Google Scholar 

  23. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D., Podorzhny, R., Prasad, M. N., Raja, A., Vincent, R., Xuan, P., and Zhang, X. Q.: Evolution of the GPGP/TEAMS domain-independent coordination framework, Autonom. Agents Multi-Agent Systems 9(1/2) (2004), 87–143.

    Google Scholar 

  24. Lewis, M. A. and Tan, K.-H.: High precision formation control of mobile robots using virtual structures, Autonom. Robots 4(4) (1997), 387–403.

    Google Scholar 

  25. Naffin, D. J., Akar, M., and Sukhatme, G. S.: Lateral and longitudinal stability for decentralized formation control, in: Seventh Internat. Symposium on Distributed Autonomous Robotic Systems, France, 2004.

  26. Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., and Kim, W. S.: CLARAty: An architecture for reusable robotic software, in: SPIE Aerosense Conference, Orlando, FL, 2003.

  27. Pant, A., Seiler, P., and Hedrick, K.: Mesh stability of look-ahead interconnected systems, IEEE Trans. Automatic Control 47(2) (2002), 403–407.

    Google Scholar 

  28. Pynadath, D. V. and Tambe, M.: An automated teamwork infrastructure for heterogeneous software agents and humans, Autonom. Agents Multi-Agent Systems 7(1/2) (2003), 71–100.

    Google Scholar 

  29. Reif, J. H. and Wang, H.: Social potential fields: A distributed behavioral control for autonomous robots, Robotics Autonom. Systems 27(3) (1999), 171–194.

    Google Scholar 

  30. Sugihara, K. and Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots, J. Robotic Systems 13(3) (1996), 127–139.

    Google Scholar 

  31. Suzuki, I. and Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns, SIAM J. Comput. 28(4) (1999), 1347–1363.

    Google Scholar 

  32. Swaroop, D. and Hedrick, J. K.: String stability of interconnected systems, IEEE Trans. Automat. Control 41(3) (1996), 349–357.

    Google Scholar 

  33. Verth, J. V., Brueggemann, V., Owen, J., and McMurry, P.: Formation-based pathfinding with real-world vehicles, in: Game Developers Conf. Proceedings, 2000.

  34. Vidal, R., Shakernia, O., and Sastry, S.: Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 2003, pp. 584–589.

  35. Wang, P. K. C.: Navigation strategies for multiple autonomous mobile robots moving in formation, J. Robotic Systems 8(2) (1991), 177–195.

    Google Scholar 

  36. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  37. Wooldridge, M.: An Introduction to Multiagent Systems, Wiley, New York, 2002.

    Google Scholar 

  38. Yamaguchi, H., Arai, T., and Beni, G.: A distributed control scheme for multiple obotic vehicles to make group formations, Robotics Autonom. Systems 36(4) (2001), 125–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Chia-Hung Hsu.

Additional information

This research was supported by the National Science Council under grant NSC 91-2213-E-194-003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, H.CH., Liu, A. Multiagent-Based Multi-team Formation Control for Mobile Robots. J Intell Robot Syst 42, 337–360 (2005). https://doi.org/10.1007/s10846-005-2965-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-005-2965-7

Keywords

Navigation