Skip to main content
Log in

Graph neural network comparison for 2D nesting efficiency estimation

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Minimizing the level of material consumption in textile production is a major concern. The cornerstone of this optimization task is the nesting problem, whose goal is to lay a set of irregular 2D parts out onto a rectangular surface, called the nesting zone, while respecting a set of constraints. Knowing the efficiency—ratio of usable to used up material enables the optimization of several textile production problems. Unfortunately, knowing the efficiency requires the nesting problem to be solved, which is computationally intensive and has been proven to be NP-hard. This paper introduces a regression approach to estimate efficiency without solving the nesting problem. Our approach models the 2D nesting problem as a graph where the nodes are images derived from parts and the edges hold the constraints. The method then consists of combining convolutional neural networks for addressing the image-based aspects and graph neural networks (GNNs) for the constraint aspects. We evaluate several neural message passing approaches on our dataset and obtain results that are sufficiently accurate for enabling several business use cases, where our model best solves this task with a mean absolute error of 1.65. We provide open access to our dataset, whose properties differ from those of other graph datasets found in the literature. This dataset is constructed on 100,000 real customers’ nesting data. Along the way, we compare the performance and generalization capabilities of four GNN architectures obtained from the literature on this dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://doi.org/10.5281/zenodo.6610253.

References

Download references

Funding

The authors did not receive support from any organization for the submitted work. However, Corentin Lallier is a PhD student (and is employed) at the Lectra company. Laurent Vézard is also employed by Lectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Lallier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 655 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lallier, C., Blin, G., Pinaud, B. et al. Graph neural network comparison for 2D nesting efficiency estimation. J Intell Manuf 35, 859–873 (2024). https://doi.org/10.1007/s10845-023-02084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-023-02084-6

Keywords

Navigation