Skip to main content
Log in

A cyber-physical prototype system in augmented reality using RGB-D camera for CNC machining simulation

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Numerical control (NC) codes verification is an important issue in computer numerical control (CNC) machining simulation because wrong NC codes will lead to the workpiece scrap and collision. The NC code verification methods both in physical space and cyber space (such as 3D computer graphics environment) have been widely investigated in recent years. However, physical verification methods have the problems that the simulation takes time and improper operations may cause danger. On the other hand, cyber verification methods only support some types of machines and cannot reflect the actual conditions of machine tools. This study proposes a cyber-physical prototype system for NC codes verification and CNC machining simulation. Based on the RGB-D camera, the depth-to-stereo model is constructed to obtain the 3D information in images. Without connecting with the CNC controller, the cutting tool and workpiece coordinate system (WCS) movement information in physical space can be got from images captured by the RGB-D camera through a convolutional neural network (CNN). Workpiece size and NC codes are imported into cyber space to render virtual workpiece with augmented reality (AR) technology. So that the operator can directly see the virtual workpiece in the physical machining scene. The virtual workpiece is machined by the cyber-physical system according to cutting tool movement in physical space. This research further confirms the feasibility of using computer vision (CV) methods to build the cyber-physical CNC simulation system based on an RGB-D camera. The potential application of the system is to obtain simulation results from CNC machine tools (especially those that are forbidden to connect the controller) and transfer the machining results to the Internet of Things (IoT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

Download references

Acknowledgements

This study is funded by the Fundamental Research Funds for the Central Universities (Grant No. NT2021019), National Natural Science Foundation of China (Grant No. 51775279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-An Yang.

Ethics declarations

Competing interest

The author declares that there is no conflict of interest.

Ethical Approval

Every ethical requirement has been met and observed.

Consent to Participate

Not applicable.

Consent to Publish

The editor has my (author) consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yang, WA. & You, Y. A cyber-physical prototype system in augmented reality using RGB-D camera for CNC machining simulation. J Intell Manuf 34, 3637–3658 (2023). https://doi.org/10.1007/s10845-022-02021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-02021-z

Keywords

Navigation