Skip to main content

Advertisement

Log in

Anthropogenic stressors are driving a steep decline of hemipteran diversity in dune ponds in north-eastern Algeria

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

In arid North Africa, dune ponds qualify as hotspots of aquatic biodiversity, offering numerous sustainable ecosystem services. Despite mounting anthropogenic pressures that threaten their integrity, the overall consequences of these changes have yet to be documented and no strategy to mitigate potential impacts is being implemented. We monitored four dune ponds in northeast Algeria during five hydrological cycles spanning the period 1996–2013. The analysis revealed a steep decline in species richness (47%) and abundance (94%) over the study period. Remote sensing-based data indicated that marked human-induced changes in and around these dune ponds have over time led to a substantial expansion of built areas and cultivated plots and a reduction in both natural wet- and dry-land habitats. Fish predation by the introduced fish, Gambusia holbrooki, may have had both direct and indirect impacts on notonectids. We argue that aquatic hemipterans have undergone an alarming reduction driven by a combination of invasive species, human encroachment, agricultural runoffs, and possibly, climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdennour C, Smith BD, Boulakoud MS, Samraoui B, Rainbow PS (2000) Trace metals in marine, brackish and freshwater prawns (Crustacea, Decapoda) from northeast Algeria. Hydrobiologia 432:217–227

    Article  Google Scholar 

  • Achite M, Ouillon S (2016) Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010). Hydrol Earth Syst Sci 20:1355–1372

    Article  Google Scholar 

  • Alamir B, Venant A, Bac LR (1984) Evaluation of pollution levels by analysis of the pesticide residues in Algerian sheep. In: Chambers PL, Preziosi P, Chambers CM (eds) Disease, metabolism and reproduction in the toxic response to drugs and other chemicals. Archives of Toxicology (Supplement), vol 7. Springer, Berlin, pp 451–452

    Google Scholar 

  • Annani F, Alfarhan AH, Samraoui B (2012) Aquatic Hemiptera of northeastern Algeria: distribution, phenology and conservation. Rev Ecol Terre Vie 67:1–13

    Google Scholar 

  • Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100

    Article  CAS  PubMed  Google Scholar 

  • Belabed BE, Meddour A, Samraoui B, Chenchouni H (2017) Modeling seasonal and spatial contamination of surface waters and upper sediments with trace metal elements across industrialized urban areas of the Seybouse watershed in North Africa. Environ Monit Assess 189:265. https://doi.org/10.1007/s10661-017-5968-5

    Article  CAS  PubMed  Google Scholar 

  • Bélair G de, Samraoui B (1994) Death of a lake: Lac Noir in northeastern Algeria. Environ Conserv 21:169–172

    Article  Google Scholar 

  • Berenzen N, Kumke T, Schulz HK, Schulz R (2005) Macroinvertebrate community structure in agricultural streams: impact of runoff-related pesticide contamination. Ecotoxicol Environ Saf 60:37–46

    Article  CAS  PubMed  Google Scholar 

  • Biesmeijer JC, Roberts S, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 31:351–354

    Article  CAS  Google Scholar 

  • Bilton DT, McAbendroth LC, Nicolet P, Bedford A, Rundle SD, Foggo A, Ramsay PM (2009) Ecology and conservation status of temporary and fluctuating ponds in two areas of Southern England. Aquat Conserv 19:134–146

    Article  Google Scholar 

  • Bloechl A, Koenemann S, Phillippi B, Melber A (2010) Abundance, diversity and succession of aquatic Coleoptera and Heteroptera in a cluster of artificial ponds in the North German Lowlands. Limnologica 40:215–225

    Article  Google Scholar 

  • Botsford LW, Vondracek B, Wainwright TC, Linden AL, Kope RG, Reed DE, Cech J (1987) Population development of the Mosquitofish, Gambusia affinis, in rice fields. Environ Biol Fish 20:143–154

    Article  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133

    Article  Google Scholar 

  • Bunn SE (2016) Grand challenge for the future of freshwater ecosystems. Front Environ Sci 4:21. https://doi.org/10.3389/fenvs.2016.00021

    Article  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the World’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99

    Article  Google Scholar 

  • Céréghino R, Boix D, Cauchie H-M, Martens K, Oertli B (2014) The ecological role of ponds in a changing world. Hydrobiologia 723:1–6

    Article  Google Scholar 

  • Chakri K, Touati L, Alfarhan AH, Al-Rasheid KAS, Samraoui B (2010) Effect of vertebrate and invertebrate kairomones on the life history of Daphnia magna Straus (Crustacea: Branchiopoda). C R Biol 333:836–840

    Article  PubMed  Google Scholar 

  • Clark EA (1998) Landscape variables affecting livestock impacts on water quality in the humid temperate zone. Can J Plant Sci 78:181–190

    Article  Google Scholar 

  • Collinson NH, Biggs J, Corfield A, Hodson MJ, Walker D, Whitfield M, Williams PJ (1995) Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrates communities. Biol Conserv 74:125–133

    Article  Google Scholar 

  • Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291

    Article  Google Scholar 

  • Cook WL, Streams FA (1984) Fish predation on Notonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia 64:177–183

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Biggs J, Williams P, Whitfield M, Nicolet P, Sear D, Bray S, Maund S (2008) Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric Ecosyst Environ 125:1–8

    Article  Google Scholar 

  • Della Bella V, Bazzanti M, Chiarotti F (2005) Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquat Conserv 15:583–600

    Article  Google Scholar 

  • Demnati F, Samraoui B, Allache F, Sandoz A, Ernoul L (2017) A literature review of Algerian salt lakes: values, threats and implications. Environ Earth Sci 76:127. https://doi.org/10.1007/s12665-017-6443-x

    Article  Google Scholar 

  • Dirnberger JM, Love J (2016) Seasonal specialization and selectivity of the Eastern Mosquitofish, Gambusia holbrooki, toward planktonic prey. Southeast Nat 15:138–152

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Dossena M, Yvon-Durocher G, Grey J, Montoya JM, Perkins DM, Trimmer M, Woodward G (2012) Warming alters community size structure and ecosystem functioning. Proc R Soc Lond B 279:3011–3019

    Article  Google Scholar 

  • Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29:9–24

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler D, Lévêque C,. Naiman RJ,. Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Farley J, Costanza R (2010) Payments for ecosystem services: from local to global. Ecol Econ 69:2060–2068

    Article  Google Scholar 

  • Fleischner TL (1994) Ecological costs of livestock grazing in western North America. Conserv Biol 8:629–644

    Article  Google Scholar 

  • Gibert JP, DeLong JP (2014) Temperature alters food web body-size structure. Biol Lett 10:20140473

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodsell JA, Kats LB (1999) Effect of introduced Mosquitofish on Pacific Treefrogs and the role of alternative prey. Conserv Biol 13:921–924

    Article  Google Scholar 

  • Hädicke CW, Rédei D, Kment P (2017) The diversity of feeding habits recorded for water boatmen (Heteroptera: Corixoidea) world-wide with implications for evaluating information on the diet of aquatic insects. Eur J Entomol 114:147–159

    Article  Google Scholar 

  • Haiahem D, Touati L, Baaziz N, Samraoui F, Alfarhan AH, Samraoui B (2017) Impact of eastern mosquitofish, Gambusia holbrooki, on temporary ponds: insights on how predation may structure zooplankton communities. Zool Ecol 27:124–132

    Article  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809. https://doi.org/10.1371/journal.pone.0185809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollis GE (1992) The causes of wetland loss and degradation in the Mediterranean. In: Finlayson CM, Davis TJ (eds) Managing Mediterranean wetlands and their birds. IWRB, Slimbridge, pp 83–90

    Google Scholar 

  • Hurlbert SH, Zedler J, Fairbanks D (1972) Ecosystem alteration by Mosquitofish Gambusia affinis predation. Science 175:639–641

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson GE (1993) A treatise on limnology. In: Edmondson YH (ed) The zoobenthos, vol IV. Wiley, New York

    Google Scholar 

  • Jansson A (1977) Micronectae (Heteroptera, Corixidae) as indicators of water quality in two lakes in southern Finland. Ann Zool Fennici 14:118–124

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Klecka J (2014) The role of a water bug, Sigara striata, in freshwater food webs. Peer J 2:e389

    Article  PubMed  Google Scholar 

  • Komak S, Crossland MR (2000) An assessment of the introduced Mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings and tadpoles of native and non-native anurans. Wildl Res 27:185–189

    Article  Google Scholar 

  • Kovac D, Machwitz U (1991) The function of the metathoracic scent gland in corixid bugs (Hemiptera, Corixidae): secretion-grooming on the water surface. J Nat Hist 25:331–340

    Article  Google Scholar 

  • Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Chang 137:245–260

    Article  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Book  Google Scholar 

  • Maltby L, Brock TC, Van den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ Sci Technol 43:7556–7563

    Article  CAS  PubMed  Google Scholar 

  • McCauley SJ, Rowe L (2010) Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol Lett 6:449–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Mebdoua S, Lazali M, Ounane SM, Tellah S, Nabi F, Ounane G (2017) Evaluation of pesticide residue in fruits and vegetables from Algeria. Food Addit Contam Part B 10:91–98

    Article  CAS  Google Scholar 

  • Mitchell M, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Hernandez ME (2015) Ecosystem services of wetlands. Intl J Biodivers Sci Eco Serv Mgt 11:1–4

    Article  Google Scholar 

  • Müller R, Seeland A, Jagodzinski LS, Diogo JB, Nowak C, Oehlmann J (2012) Simulated climate change conditions unveil the toxic potential of the fungicide pyrimethanil on the midge Chironomus riparius: a multigeneration experiment. Ecol Evol 2:196–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Mura T, Takahashi RM, Wilder WH (1984) Impact of the mosquitofish (Gambusia affinis) on a rice field ecosystem when used as a mosquito control agent. Mosq News 44:510–517

    Google Scholar 

  • Murdoch WW, Scott MA, Ebsworth P (1984) Effects of the general predator, Notonecta (Hemiptera) upon a freshwater community. J Anim Ecol 53:791–808

    Article  Google Scholar 

  • Nader GA, Tate KW, Atwill ER, Bushnell J (1998) Water quality effect of rangeland beef cattle excrement. Rangelands 20:19–25

    Google Scholar 

  • Nicolet P, Biggs J, Fox G, Hodson MJ, Reynolds C, Whitfield M, Williams P (2004) The wetland plant and macroinvertebrates assemblages of temporary ponds in England and Wales. Biol Conserv 120:261–278

    Article  Google Scholar 

  • Nørgaard KB, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res 17:957–967

    Article  CAS  Google Scholar 

  • O’Gorman EJ, Zhao L, Pichler DE, Adams G, Friberg N, Rall BC, Seeney A, Zhang HY, Rauman DC, Woodward G (2017) Unexpected changes in community size structure in a natural warming experiment. Nat Clim Chang 7:659–663

    Article  Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lacahvanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Article  Google Scholar 

  • Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lacahvanne JB (2005) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv 15:535–540

    Article  Google Scholar 

  • Papáček M (2001) Small aquatic and ripicolous bugs (Heteroptera: Nepomorpha) as predators and prey: the question of economic importance. Eur J Entomol 98:1–12

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proenca V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Article  CAS  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  CAS  PubMed  Google Scholar 

  • Polhemus JT, Polhemus DA (2008) Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia 595:379–391

    Article  Google Scholar 

  • Pyke GH (2008) Plague Minnow or Mosquito Fish? A review of the biology and impacts of introduced Gambusia species. Annu Rev Ecol Evol Syst 39:171–191

    Article  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasmusen JJ, Wiberg-Larsen P, Baattrup-Pedersen A, Friberg N, Kronvang B (2012) Stream habitat structure influences macroinvertebrate response to pesticides. Environ Pollut 60:37–46

    Google Scholar 

  • Richter ED (2002) Acute human pesticide poisonings. In: Pimentel D (ed) Encyclopedia of pest management. Dekker, New York, pp 3–6

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2000. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Samraoui B (2002) Branchiopoda (Ctenopoda and Anomopoda) and Copepoda from eastern Numidia. Algeria Hydrobiol 470:173–179

    Article  Google Scholar 

  • Samraoui B (2018) The hand of man or Santa Rosalia’s blessing? A rebuttal of the paper “on the restoration of the relict population of a dragonfly Urothemis edwardsii Selys (Libellulidae: Odonata) in the Mediterranean”. J Insect Conserv 22:345–350

    Article  Google Scholar 

  • Samraoui B, Samraoui F (2008) An ornithological survey of Algerian wetlands: important bird areas, Ramsar sites and threatened species. Wildfowl 58:71–96

    Google Scholar 

  • Samraoui B, Bélair G de, Benyacoub S (1992) A much-threatened lake: Lac des Oiseaux in northeastern Algeria. Environ Conserv 19:264–267 + 276

    Article  Google Scholar 

  • Samraoui B, Benyacoub S, Mecibah S, Dumont HJ (1993) Afrotropical libellulids (Insecta: Odonata) in the lake district of El Kala, North-East Algeria, with a rediscovery of Urothemis e. edwardsi (Selys) and Acisoma panorpoides ascalaphoides (Rambur). Odonatologica 22:365–372

    Google Scholar 

  • Samraoui B, Bélair G de (1997) The Guerbes-Senhadja wetlands (N.E. Algeria) Part I: an overview. Ecologie 28:233–250

    Google Scholar 

  • Samraoui B, Bélair G de (1998) Les zones humides de la Numidie Orientale: Bilan des connaissances et perspectives de gestion. Synthèse 4:1–90

    Google Scholar 

  • Samraoui B, Segers H, Maas S, Baribwegure D, Dumont HJ (1998) Rotifera, Cladocera, Copepoda, and Ostracoda from coastal wetlands in northeast Algeria. Hydrobiologia 386:183–193

    Article  Google Scholar 

  • Samraoui B, Samraoui F, Benslimane N, Alfarhan AH, Al-Rasheid KAS (2012) A precipitous decline of the Algerian Newt Pleurodeles poireti Gervais, 1835 and other changes in the status of amphibians of Numidia, North-eastern Algeria. Rev Ecol Terre Vie 67:71–82

    Google Scholar 

  • Savage AA (1982) Use of water boatmen (Corixidae) in the classification of lakes. Biol Conserv 23:55–70

    Article  Google Scholar 

  • Savage AA (1990) The distribution of Corixidae in lakes and the ecological status of the North west Midlands Meres. Field Stud 7:516–530

    Google Scholar 

  • Shurin JB (2001) Interactive effects of predation and dispersal on zooplankton communities. Ecology 82:3404–3416

    Article  Google Scholar 

  • Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Philos Trans R Soc Lond B 367:3008–3017

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Editions, Paris

    Google Scholar 

  • Tebibel S (1992) Hémiptères aquatiques d’Algérie. Clés dichotomiques, inventaire des espèces, distribution en Algérie et dans le monde. Dissertation, University of Algiers, USTHB

  • Thomas JA, Telfer MG, Roy DB et al (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881

    Article  CAS  PubMed  Google Scholar 

  • Tully O, McCarthy TK, O’Donnell D (1991) The ecology of the Corixidae (Hemiptera: Heteroptera) in the corrib catchment. Irel Hydrobiol 210:161–169

    Article  Google Scholar 

  • Tunney TD, McCann KS, Lester NP, Shuter BJ (2014) Effects of differential habitat warming on complex communities. Proc Natl Acad Sci USA 111:8077–8082

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Vörösmarty C, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  CAS  PubMed  Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363

    Article  Google Scholar 

  • Wilbur HM (1997) Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78:2279–2302

    Article  Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2003) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Article  Google Scholar 

  • Zacharias I, Dimitrou E, Dekker A, Dorsman E (2007) Overview of temporary ponds in the Mediterranean region: threats, management and conservation issues. J Environ Biol 28:1–9

    PubMed  Google Scholar 

  • Zaret TM (1980) Predation and freshwater communities. Yale University Press, New Haven

    Google Scholar 

  • Zeroual A, Assani A, Meddi M (2017) Combined analysis of temperature and rainfall variability as they relate to climate indices in Northern Algeria over the 1972–2013 period. Hydrol Res 48:584–595

    Article  Google Scholar 

Download references

Acknowledgements

We are most grateful to the Associate Editor and two anonymous referees for their valuable comments and suggestions. Help from N. Layachi, F. Terki and M. Mekki is gratefully acknowledged. This work was supported by the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boudjéma Samraoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (M.E.S.R.S.) and all procedures followed were in accordance with international ethical standards.

Research involving human participants

The research involved no human participant.

Informed consent

All the authors are in agreement with the version submitted and are in agreement with its publication in Journal of Insect Conservation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 709 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benslimane, N., Chakri, K., Haiahem, D. et al. Anthropogenic stressors are driving a steep decline of hemipteran diversity in dune ponds in north-eastern Algeria. J Insect Conserv 23, 475–488 (2019). https://doi.org/10.1007/s10841-019-00133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-019-00133-1

Keywords

Navigation