Skip to main content
Log in

Anthropogenic pressure explains variations in the biodiversity of pond communities along environmental gradients: a case study in south-eastern Serbia

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

While several studies have tested the effects of anthropogenic factors on specific taxa in ponds, the simultaneous effects of the overall anthropogenic pressure along the environmental gradient on the diversity of different groups of pond communities remain unknown. In this study, we evaluated the simultaneous effects of the overall intensity of human impact and characteristics of natural pond variability on the diversity and density of macrophytes, benthic and epiphytic macroinvertebrates, and fish community and water chemistry in pond ecosystems. We found a reduction in the diversity and density of macrophytes and in the diversity of epiphytic macroinvertebrates with an increased human pressure. The effects of the intensity of human impact on the diversity of epiphytic macroinvertebrates were mediated via changes in macrophyte diversity. Benthic macroinvertebrates were not affected by an increase in the intensity of human pressure. Fish community responded to the increased human pressure with shifts in abundance through the predominance of invasive species. Natural pond variability properties affected the pond communities and water chemistry in the majority of cases. Our results conclude that for understanding the effects of human activity on pond biodiversity, integrating the simultaneous effects of multiple anthropogenic and abiotic factors in ponds is desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, A. P., T. R. Whittier, P. R. Kaufmann, D. P. Larsen, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999a. Concordance of taxonomic richness patterns across multiple assemblages in lakes of the northeastern United States. Canadian Journal of Fisheries and Aquatic Sciences 56: 739–747.

    Article  Google Scholar 

  • Allen, A. P., T. R. Whittier, D. P. Larsen, P. R. Kaufmann, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999b. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size and land use. Canadian Journal of Fisheries and Aquatic Sciences 56: 2029–2040.

    Article  Google Scholar 

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Article  Google Scholar 

  • American Public Health Association (APHA), 1985. Standard Methods for Examination of Water and Wastewater, 16th ed. American Public Health Association (APHA), Washington, DC, 1481 pp.

  • Andersen, T., Cranston, P.S. & Epler, J.H. (eds). 2013. The larvae of Chironomidae (Diptera) of the Holarctic region – Keys and diagnoses. Insect Systematics and Evolution Suppl. 66; 571 pp.

  • Angélibert, S., V. Rosset, N. Indermuehle & B. Oertli, 2010. The pond biodiversity index “IBEM”: a new tool for the rapid assessment of biodiversity in ponds from Switzerland. Part 1. Index development. Limnetica 29: 93–104.

    Google Scholar 

  • APHA, 1999. Standard Methods for the Examination of Water and Wastewater, 9th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Armitage, P., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae. The Biology and Ecology of Non-Biting Midges. Chapman & Hall, London.

    Google Scholar 

  • Barker, T., K. Hatton, M. O’Connor, L. Connor & B. Moss, 2008. Effects of nitrate load on submerged plant biomass and species richness: results of a mesocosm experiment. Fundamental and Applied Lymnology 173(2): 89–100.

    Article  CAS  Google Scholar 

  • Batzer, D. P., B. J. Palik & R. Buech, 2004. Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23: 50–68.

    Article  Google Scholar 

  • Bauernfeind, E. & U. Humpesch, 2001. Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ökologie. Verlag des Naturhistorischen Museums, Wien: 239.

    Google Scholar 

  • Bazzanti, M., V. Della Bella & M. Seminara, 2003. Factors affecting macroinvertebrate communities in astatic ponds in Central Italy. Journal of Freshwater Ecology 18: 537–548.

    Article  CAS  Google Scholar 

  • Bennett, A. F. 1998, 2003. Linkages in the Landscape: The role of Corridors and Connectivity in Wildlife Conservation. IUCN, Gland, Switzerland and Cambridge, UK. xiv + 254 pp.

  • Biggs, J., A. Corfield, D. Walker, M. Whitfield & P. Williams, 1994. New approaches to the managements of ponds. British Wildlife 5: 273–287.

    Google Scholar 

  • Biggs, J., P. Williams, P. N. Whitfield & A. Weatherby, 2005. 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 693–714.

    Article  Google Scholar 

  • Bischof, M. M., M. A. Hanson, M. R. Fulton, R. K. Kolka, S. D. Sebestyen & M. G. Butler, 2013. Invertebrate Community Patterns in Seasonal Ponds in Minnesota, USA: response to Hydrologic and Environmental Variability. Wetlands 33: 245–256.

    Article  Google Scholar 

  • Blicharska, M., J. Andersson, J. Bergsten, U. Bjelke, T. Hilding-Rydevik & F. Johansson, 2016. Effects of management intensity, function and vegetation on the biodiversity in urban ponds. Urban Forestry & Urban Greening 20: 103–112.

    Article  Google Scholar 

  • Blütheng, N., Dormann, C.F., Prati, D., Klaus, V.H., Kleinebecker, T., Hölzel, N., Alt, F., Boch, S., Gockel, S., Hemp, A., Müller, J., Nieschulze, J., Renner, S. C., Schöning, I., Schumacher, U., Cocher, S.A., Wells, K., Brikhofer, K., Buscot, F., Oelmann, Y., Rothenwöhrer, C., Scherber, C., Tscharntke, T., Weiner, C.N., Fischer, M., Kalko, E.K.V., Linsenmair, K.E., Schulze, E.D. & Weisser, W.W. 2012. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology 13: 207–220.

  • Boix, D., S. Gascón, J. Sala, A. Badosa, S. Brucet, R. López-Flores, M. Martinoy, J. Gifre & X. D. Quintana, 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597: 53–69.

    Article  Google Scholar 

  • Boix, D., J. Biggs, R. Céréghino, A. P. Hull, T. Kalettka & B. Oertli, 2012. Pond research and management in Europe: “Small is beautiful”. Hydrobiologia 689: 1–9.

    Article  Google Scholar 

  • Bornette, G., C. Amoros & N. Lamouroux, 1998. Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biology 39: 267–283.

    Article  Google Scholar 

  • Bornette, G. & C. Amoros, 1991. Aquatic vegetation and hydrology of a braided river floodplain. Journal of Vegetation Science 2: 497–512.

    Article  Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.

    Article  CAS  Google Scholar 

  • Bosiacka, B. & P. Pieńkowski, 2012. Do biogeographic parameters matter? Plant species richness and distribution of macrophytes in relation to area and isolation of ponds in NW Polish agricultural landscape. Hydrobiologia 689: 79–90.

    Article  Google Scholar 

  • Brose, U., 2001. Relative importance of isolation, area and habitat heterogeneity for vascular plant species richness of temporary wetlands in East-German farmland. Ecography 24: 722–730.

    Article  Google Scholar 

  • Brönmark, C. & L. A. Hansson, 2002. Environmental issues in lakes and ponds: current state and perspectives. Environmental Conservation 29: 290–306.

    Article  CAS  Google Scholar 

  • Brock, T. C. M., G. Van der Velde & H. M. Van de Steeg, 1987. The effects of extreme water level fluctuations on the wetland vegetation of a nymphaeid-dominated oxbow lake in The Netherlands. Archiv für Hydrobiologie 27: 57–73.

    Google Scholar 

  • Camargo, J. A., A. Alonso & A. Salamanca, 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58: 1255–1267.

    Article  CAS  PubMed  Google Scholar 

  • Camargo, J. A. & A. Alonso, 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International 32: 831–849.

    Article  CAS  PubMed  Google Scholar 

  • Cao, T., P. Xie, L. Ni, A. Wu, M. Zhang, S. Wu & A. J. P. Smolders, 2007. The role of NH4 + toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin, China. Marine and Freshwater Research 58: 581–587.

    Article  CAS  Google Scholar 

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava & S. Naeem, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67. https://doi.org/10.1038/nature11148.

    Article  CAS  Google Scholar 

  • Cattaneo, A., G. Galanti, S. Gentinetta & S. Romo, 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725–740.

    Article  Google Scholar 

  • Cayrou, J. & R. Céréghino, 2003. Life history, growth and secondary production of Caenis luctuosa and Cloeon simile (Ephemeroptera) in a small pond, S.W. France. Aquatic Insects 25: 191–201.

    Article  Google Scholar 

  • Cayrou, J. & R. Céréghino, 2005. Life-cycle phenology of some aquatic insects: implications for pond conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 559–571.

    Article  Google Scholar 

  • Cheruvelil, K. S., P. A. Soranno, J. D. Madsen & M. J. Roberson, 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. Journal of the North American Benthological Society 21: 261–277.

    Article  Google Scholar 

  • Clarke, E. & A. H. Baldwin, 2002. Responses of wetland plants to ammonia and water level. Ecological Engineering 18: 257–264.

    Article  Google Scholar 

  • Copp, G. H., K. J. Wesley & L. Vilizzi, 2005. Pathways of ornamental and aquarium fish introductions into urban ponds of Epping Forest (London, England): the human vector. Journal of Applied Ichthyology 21: 263–274.

    Article  Google Scholar 

  • Cyr, H. & A. Downing, 1988. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Canadian Journal of Fisheries and Aquatic Science 45: 976–984.

    Article  Google Scholar 

  • Céréghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The Ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.

    Article  Google Scholar 

  • Céréghino, R., D. Boix, H. M. Cauchie, K. Martens & B. Oertli, 2014. The ecological role of ponds in changing world. Hydrobiologia 723: 1–6.

    Article  Google Scholar 

  • Coffman, W. P., 1973. Energy flow in a woodland stream ecosystem: II. The taxonomic composition and phenology of the Chironomidae as determined by the collection of the pupal exuviae. Archiv für Hydrobiologie 71: 281–322.

    Google Scholar 

  • Dahl, J., R. K. Johnson & L. Sandin, 2004. Detection of organic pollution in southern Sweden using benthic macroinvertebrates. Hydrobiologia 516: 161–172.

    Article  CAS  Google Scholar 

  • Declerck, S., T. De Bie, D. Ercken, H. Hampel, S. Schrijvers, J. Van Wichelen, V. Gillard, R. Mandiki, B. Losson, D. Bauwens, S. Keijers, W. Vyverman, B. Goddeeris, L. De Meester, L. Brendonck & K. Mertens, 2006. Ecological characteristics of small farmland ponds: Associations with land use practices at multiple spatial scales. Biological Conservation 131: 523–532.

    Article  Google Scholar 

  • Della Bella, V., M. Bazzanti, M. G. Dowgiallo & M. Iberite, 2008. Macrophyte diversity and physico-chemical characteristics of Tyrrhenian coast ponds in central Italy: implications for conservation. Hydrobiologia 597: 85–95.

    Article  CAS  Google Scholar 

  • Della Bella, V. & L. Mancini, 2009. Freshwater diatom and macroinvertebrate diversity of coastal permanent ponds along a gradient of human impact in a Mediterranean eco-region. Hydrobiologia 364: 25–41.

    Article  Google Scholar 

  • Delsol, R., M. Loreau & B. Heageman, 2018. The relationship between the spatial scaling of biodiversity and ecosystem stability. Global Ecology and Biogeography 27: 439–449.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van de Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.

    Article  Google Scholar 

  • Diehl, S. & R. Kornijów, 1998. The influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppensen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds.), The structuring role of macrophytes in lakes. Springer, New York: 24–46.

    Chapter  Google Scholar 

  • Dodson, S. I., R. A. Lillie & S. Will-Wolf, 2005. Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecological Applications 15: 1191–1198.

    Article  Google Scholar 

  • Dudgeon, D., 2010. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Current Opinion in Environmental Sustainability 2: 422–430.

    Article  Google Scholar 

  • Ebeling, A., S. T. Meyer, M. Abbas, N. Eisenhauer, H. Hillebrand, M. Lange, C. Scherber, A. Vogel, A. Weigelt & W. W. Weisser, 2014. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PloS ONE 9: 1–8. https://doi.org/10.1371/journal.pone.0106529.

    Article  CAS  Google Scholar 

  • Eiseler, B. 2005. Bildbestimmungsschlussel für die Eintagsfliegenlarven der deutschen Mittelgebirge und des Tieflandes (Identification key to the mayfly larvae of the German Highlands und Lowlands Lauterbornia). 53, 1-112.

  • Elliot, J., Humpesch, U. & Macan, T. 1988. Larvae of the British Ephemeroptera: A Key with Ecological Notes. FBA Scientific Publication, 145 pp.

  • Elliot, J. & U. Humpesch, 2010. Mayfly larvae (Ephemeroptera) of Britain and Ireland: Keys and Review of their Ecology. Freshwater Biological Association, Ambleside: 152.

    Google Scholar 

  • Friberg, N., J. Skriver, S. E. Larsen, M. L. Pedersen & A. Buffagni, 2010. Stream macroinvertebrate occurrence along gradients in organic pollution and eutrophication. Freshwater Biology 55: 1405–1419.

    Article  CAS  Google Scholar 

  • Gerken, B. & K. Sternberg, 1999. Die Exuvien Europäischer Libellen (Insecta, Odonata). The exuviae of European dragonflies. Arnika & Eisvogel, Höxter, Jena: 354.

    Google Scholar 

  • Glöer, P., 2002. Die süßwassergastropoden Nord- und Mitteleuropas. Bestimmungsschlüssel, Lebenweise, Verbreitung. Zbirka Die tierwelt Deutschlands. Založba Conchbooks, Bonn: 327.

    Google Scholar 

  • Gossner, M. M., P. Lade, A. Rohland, N. Sichardt, T. Kahl, J. Bauhus, W. W. Weisser & J. S. Petermann, 2016. Effects of management on aquatic tree-hole communities in temperate forests are mediated by detritus amount and water chemistry. Journal of Animal Ecology 85: 213–226. https://doi.org/10.1111/1365-2656.12437.

    Article  PubMed  Google Scholar 

  • Grace, J. B., T. M. Anderson, M. D. Smith, E. Seabloom, S. J. Andelman, G. Meche, E. Weiher, L. K. Allain, H. Jutila, M. Sankaran, J. Knops, M. Ritchie & M. R. Willig, 2007. Does species diversity limit productivity in natural grassland communities? Ecology Letters 10: 680–689. https://doi.org/10.1111/j.1461-0248.2007.01058.x.

    Article  PubMed  Google Scholar 

  • Han, Z. & B. Cui, 2016. Performance of macrophyte indicators to eutrophication pressure in ponds. Ecological Engineering 96: 8–19.

    Article  Google Scholar 

  • Hautier, Y., D. Tilman, F. Isbell, E. W. Seabloom, E. T. Borer & P. B. Reich, 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science (New York, N.Y.) 348: 336–340. https://doi.org/10.1126/science.aaa1788.

    Article  CAS  Google Scholar 

  • Heiler, G., T. Hein, F. Schiemer & G. Bornette, 1995. Hydrological connectivity and flood pulses as the central aspects for the integrity of a river-floodplain system. Regulated Rivers: Research & Management 11: 351–361.

    Article  Google Scholar 

  • Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators 10: 112–117.

    Article  Google Scholar 

  • Henry, C. P., C. Amoros & G. Bornette, 1996. Species traits and recolonization processes after flood disturbances in riverine macrophytes. Vegetatio 122: 13–27.

    Article  Google Scholar 

  • Hickey, C. V. & M. L. Vickers, 1994. Toxicity of ammonia to nine native New Zealand freshwater invertebrate species. Archives of Environmental Contamination and Toxicology 26: 292–298.

    Article  CAS  Google Scholar 

  • Hill, M. J., D. B. Ryves, R. C. White & P. J. Wood, 2016. Macroinvertebrate diversity in urban and rural ponds: Implications for freshwater biodiversity conservation. Biological Conservation 201: 50–59.

    Article  Google Scholar 

  • Grace, J.B. & Pugesek, B.H. 1997. A structural equation model of plant species richness and its application to a coastal wetland. The American Naturalist 149: 436–460.

    Article  Google Scholar 

  • Grace, J.B. & Jutila, H. 1999. The relationship between species density and community biomass in grazed and ungrazed coastal meadows. Oikos 85: 398–408.

    Article  Google Scholar 

  • Hooper, D. U., F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Huston, M., 1979. A general hypothesis of species diversity. The American Naturalist 113: 81–101.

    Article  Google Scholar 

  • Indermuehle, N., S. Angélibert, V. Rosset & B. Oertli, 2010. The pond biodiversity index “IBEM”: a new tool for the rapid assessment of biodiversity in ponds from Switzerland. Part 2. Method description and examples of application. Limnetica 29: 105–119.

    Google Scholar 

  • Jackson, M. C., C. J. G. Loewen, R. D. Vinebrook & C. T. Chimimba, 2016. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology 22: 180–189.

    Article  PubMed  Google Scholar 

  • James, C., J. Fisher, V. Russell, S. Collings & B. Moss, 2005. Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater Biology 50: 1049–1063.

    Article  CAS  Google Scholar 

  • Jampeetong, A. & H. Brix, 2009. Effects of NH4 + concentration on growth, morphology and NH4 + uptake kinetics of Salvinia natans. Ecological Engineering 35: 695–702.

    Article  Google Scholar 

  • Jeffries, M., 2012. Ponds and the importance of their history: an audit of pond numbers, turnover and the relationship between the origins of ponds and their contemporary plant communities in south-east Northumberland, UK. Hydrobiologia 689: 11–21.

    Article  Google Scholar 

  • Jenačković, D. D., D. Lakušić, I. Zlatković, M. Jušković & N. V. Ranđelović, 2019. Emergent wetland vegetation data recording: Does an optimal period exist? Applied Vegetation Science. https://doi.org/10.1111/avsc.12419.

    Article  Google Scholar 

  • Josifović, M. (Ed.) (1970–1980). Flora SR Srbije, I-X. Beograd: SANU (In Serbian).

  • Jurajda, P., M. Ondračková & M. Reichard, 2004. Managed flooding as a tool for supporting natural fish reproduction in man-made lentic water bodies. Fisheries Management and Ecology 11: 237–242.

    Article  Google Scholar 

  • Kaller, M. D. & K. J. Hartman, 2004. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 518: 95–104.

    Article  Google Scholar 

  • Kizuka, T., M. Akasaka, T. Kadoya & N. Takamura, 2014. Visibility from roads predict the distribution of invasive fishes in agricultural ponds. PLoS ONE 9: 1–10. https://doi.org/10.1371/journal.pone.0099709.

    Article  CAS  Google Scholar 

  • Knowlton, M. F. & J. R. Jones, 1997. Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands 17: 468–475.

    Article  Google Scholar 

  • Kornijów, R., R. D. Gulati & E. van Donk, 1990. Hydrophyte-macroinvertebrate interactions in Zwemlust, a lake undergoing biomanipulation. Hydrobiologia 200(201): 467–474.

    Article  Google Scholar 

  • Lacoul, P. & B. Freedman, 2006. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquatic Botany 84: 3–16.

    Article  Google Scholar 

  • Lewin, W. C., T. Mehner, D. Ritterbusch & U. Brämick, 2013. The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees. Hydrobiologia 724: 293–306. https://doi.org/10.1007/s10750-013-1746-8.

    Article  Google Scholar 

  • Loreau, M., S. Naeem, P. Inschausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman & D. A. Wardle, 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 294: 804–808.

    Article  CAS  Google Scholar 

  • Mallin, M. A., V. L. Johnson & S. H. Ensing, 2009. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environmental Monitoring and Assessment 159: 475–491.

    Article  CAS  PubMed  Google Scholar 

  • Mehner, T., M. Diekmann, U. Brämick & R. Lemcke, 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshwater Biology 50: 70–85.

    Article  CAS  Google Scholar 

  • Miller, A. J. & M. D. Cramer, 2004. Root nitrogen acquisition and assimilation. Plant and Soil 274: 1–36.

    Article  CAS  Google Scholar 

  • Miracle, M. R., B. Oertli, R. Céréghino & A. Hull, 2010. Preface: conservation of European ponds- current knowledge and future needs. Limnetica 29: 1–8.

    Google Scholar 

  • Moller Pillot, H.K.M. 1984a. De larven der Nederlandse Chironomidae (Diptera). 1A: Inleiding, Tanypodinae en Chironomini, St. E.I.S Nederland, Leiden.

  • Moller Pillot, H.K.M. 1984b. De larven der Nederlandse Chironomidae (Diptera). 1B: Orthocladiinae sensu lato. St. E.I.S. Nederland, Leiden.

  • Moller Pillot, H. K. M., 2009. Chironomidae larvae. Biology and Ecology of Chironomini. KNNV Publishing, Zeist.

    Book  Google Scholar 

  • Myers, N., 1996. Environmental services of biodiversity. Proceedings of the National Academy of Sciences of the United States of America 93: 2764–2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolet, P., A. Ruggiero & J. Biggs, 2007. Second European pond workshop: conservation of pond biodiversity in a changing European landscape. Annales de Limnologie- International Journal of Lymnology 43: 77–80.

    Article  Google Scholar 

  • Nilsson, A. 1997. Aquatic Insects of North Europe. A Taxonomic Handbook. Odonata Diptera. Volume 2. Apollo Books, Stenstrup.

  • Oertli, B., D. A. Joye, E. Castella, R. Juge, D. Cambin & J. B. Lachavanne, 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.

    Article  Google Scholar 

  • Oertli, B., D. A. Joye, N. Indermuehle, R. Juge & J. B. Lachavanne, 2004. 1st European pond workshop “Conservation and monitoring of pond biodiversity”. Archives des Sciences 57: 69–72.

    Google Scholar 

  • Oertli, B., N. Indermuehle, S. Angélibert, H. Hinden & A. Stoll, 2008. Macroinvertebrate assemblages in 25 high alpine ponds of the Swiss National Park (Cirque of Macun) and relation to environmental variables. Hydrobiologia 597: 29–41.

    Article  Google Scholar 

  • Oertli, B., R. Céréghino, A. Hull & R. Miracle, 2009. Pond conservation: from science to practise. Hydrobiologia 634: 1–9.

    Article  Google Scholar 

  • Perrow, M. R., M. L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342(343): 355–365.

    Article  Google Scholar 

  • Petchey, O. L., A. L. Downing, D. D. Mittelbach, L. Persson, C. F. Steiner, P. H. Warren & G. Woodward, 2004. Species loss and the structure and functioning of multitrophic aquatic systems. OIKOS 104: 467–478.

    Article  Google Scholar 

  • Petermann, J. S., A. Rohland, N. Sichardt, P. Lade, B. Guidetti, W. W. Weisser & M. M. Gossner, 2016. Forest management intensity affects aquatic communities in artificial tree holes. PLoS ONE. https://doi.org/10.1371/journal.pone.0155549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfleger, V. 2000. A Field Guide in Colour to Molluscs. UK edition. Silverdale Books, 216 pp.

  • Pinheiro, J. C., D. M. Bates, S. DebRoy, D. Sarkar & R. Core Team, 2014. R nlme: Linear and Nonlinear Mixed Effects Models. R package Version 3: 1–118.

    Google Scholar 

  • R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Ranđelović, V., Matejić, J. & Zlatković, B. 2007. Flora i vegetacija Batušinačkih bara kod Niša. In: Proceedings of 9th Symposium on Flora of Southeastern Serbia and Neighbouring Regions, 19–40. (In Serbian).

  • Rempel, R. S. & A. D. Harrison, 1987. Structural and functional composition of the community of Chironomidae (Diptera) in a Canadian Shield Stream. Canadian Journal of Zoology 65: 2545–2554.

    Article  Google Scholar 

  • Rossaro, B. & V. Lencioni, 2015. A key to larvae of Diamesa Meigen, 1835 (Diptera, Chironomidae), well known as adult males and pupae from Alps (Europe). Journal of Entomological and Acarological Research 47: 123–138.

    Article  Google Scholar 

  • Ruggiero, A., A. G. Solimini & G. Carchini, 2003. Nutrient and chlorophyll a temporal patterns in eutrophic mountain ponds with contrasting macrophyte coverage. Hydrobiologia 506–509: 657–663.

    Article  Google Scholar 

  • Sala, O. E., F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzing, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. R. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774. https://doi.org/10.1126/science.287.5459.1770.

    Article  CAS  Google Scholar 

  • Sass, L. L., M. A. Bozek, J. A. Hauxwell, K. Wagner & S. Knight, 2010. Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, U.S.A. Aquatic Botany 93: 1–8.

    Article  Google Scholar 

  • Schargel, M., I. Bloch, D. G. Angeler & C. Fesl, 2009. The use of urban clay-pit ponds for human recreation: assessment of impact on water quality and phytoplankton assemblages. Environmental Monitoring and Assessment 165: 283–293. https://doi.org/10.1007/s10661-009-0945-2.

    Article  CAS  Google Scholar 

  • Schefer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppensen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  Google Scholar 

  • Schmid, P. 1993. A key to the larval Chironomidae and their instars from Austrian Danube Region streams and rivers. Part 1. Diamesinae, Prodiamesinae and Orthocladiinae. Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, Wien, 513 pp.

  • Schulthorpe, C. D., 1967. The biology of aquatic vascular plants. Edward Arnold, London.

    Google Scholar 

  • Smolders, A. J. P., E. C. H. E. T. Lucassen & J. G. M. Roelofs, 2002. The isoetid environment: biogeochemistry and threats. Aquatic Botany 73: 325–350.

    Article  CAS  Google Scholar 

  • Sparks, R. E., P. B. Bayley, S. L. Kohler & L. L. Osborne, 1990. Disturbance and recovery of large floodplain rivers. Environmental Management 14: 699–709.

    Article  Google Scholar 

  • Srivastava, D. S. & J. H. Lawton, 1998. Why more productive sites have more species: an experimental test of theory using tree hole communities. The American Naturalist 152: 510–529. https://doi.org/10.1086/286187.

    Article  CAS  PubMed  Google Scholar 

  • Szoszkiewicz, K., T. Ferreira, T. Korte, A. Baattrup-Pedersen, J. Davy-Bowker & M. O’Hare, 2006. European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566: 211–234.

    Article  CAS  Google Scholar 

  • Tammi, J., M. Appelberg, U. Beier, T. Hesthagen, A. Lappalainen & M. Rask, 2003. Fish status survey of Nordic lakes: Effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio 32: 98–105.

    Article  PubMed  Google Scholar 

  • Taylor, P. D., 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.

    Article  Google Scholar 

  • Thomaz, S. M. & E. R. Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages, composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Article  Google Scholar 

  • Timm, T. 1999. Eestirõngusside (Annelida) määraja. A Guide to the Estonian Annelidae. Estonian Academy Publishers, Tartu-Tallinn.

  • Tockner, K., D. Pennetzdorfer, N. Reiner, F. Schiemer & J. V. Ward, 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwater Biology 41: 521–535.

    Article  Google Scholar 

  • Trigal, C., F. García-Criado & C. F. Aláes, 2007. Macroinvertebrate communities of Mediterranean ponds (North Iberian Plateau): importance of natural and human-induced variability. Freshwater Biology 52: 2042–2055.

    Article  Google Scholar 

  • Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M. & Webb, D.A. (Eds.) (1964–1980). Flora Europaea, I–V. London: Cambridge University Press.

  • Usio, N., M. Nakagawa, T. Aoki, S. Higuchi, Y. Kadono, M. Akasaka & N. Takamura, 2017. Effects of land use on trophic states and multi-taxonomic diversity in Japanese farm ponds. Agriculture, Ecosystems and Environment 247: 205–215.

    Article  Google Scholar 

  • Walkley, A. & I. A. Black, 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29–38.

    Article  CAS  Google Scholar 

  • Waringer, J. & W. Graf, 1997. Atlas der Österreichischen Köcherfliegenlarven: unter Einschluss der angrenzenden Gebiete. Facultas Universitätsverlag, Wien: 288.

    Google Scholar 

  • Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341. https://doi.org/10.1016/S0006-3207(03)00153-8.

    Article  Google Scholar 

  • Zacharias, I., E. Dimitriou, A. Dekker & E. Dorsman, 2007. Overview of temporary ponds in the Mediterranean region: Threats, management and conservation issues. Journal of Environmental Biology 28: 1–9.

    PubMed  Google Scholar 

  • Zacharias, I. & M. Zamparas, 2010. Mediterranean temporary ponds. A disappearing ecosystem. Biodiversity and Conservation 19: 3827–3834.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant #43002 (“Biosensing technologies and global systems for the long-term research and integrated management of ecosystems”) and a bilateral cooperation scientific project between Serbia and Croatia, both funded by the Serbian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Contributions

O.Y.B., V.S., M.S.P., D.M., and O.S. designed the study, and developed the analytical procedure. All authors except O.Y.B. contributed data. O.Y.B. performed statistical analysis. O.S. wrote the original draft, and all authors substantially reviewed and edited the manuscript.

Corresponding author

Correspondence to Olivera Stamenković.

Additional information

Handling editor: Dani Boix

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 320 kb)

Supplementary material 2 (PDF 427 kb)

Supplementary material 3 (PDF 426 kb)

Supplementary material 4 (PDF 394 kb)

Supplementary material 5 (PDF 320 kb)

Supplementary material 6 (PDF 306 kb)

Supplementary material 7 (PDF 297 kb)

Supplementary material 8 (PDF 317 kb)

10750_2019_3978_MOESM9_ESM.tif

Online Resource 9 Mixed model partial residual plot showing the effect of road proximity on abundance of fish species (number of individuals) in the study ponds. Solid lines show significant mixed model results (p < 0.05; i.e., for Carassius auratus, Pseudorasbora parva, and Lepomis gibbosus). Gray dashed lines indicate non-significant mixed model results (i.e., for species Esox lucius, Perca fluviatilis, Silurus glanis, Cobitis taenia, Rutilus rutilus, Rhodeus sericeus, Alburnus alburnus, Cyprinus carpio, Ictalurus nebulosus, Squalius cephalus, and Chondrostoma nasus). Road proximity index (unitless) was measured for each study site as the site-specific distance to the nearby highway relative to its mean across all study sites (for details see Materials and methods). Supplementary material 9 (TIFF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamenković, O., Stojković Piperac, M., Milošević, D. et al. Anthropogenic pressure explains variations in the biodiversity of pond communities along environmental gradients: a case study in south-eastern Serbia. Hydrobiologia 838, 65–83 (2019). https://doi.org/10.1007/s10750-019-03978-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-03978-4

Keywords

Navigation