Skip to main content

Advertisement

Log in

Can highland habitat type distributions replace mapping of harvestman species?

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

In nature conservation, providing new, advanced knowledge of protected habitats and biota often requires extensive sampling, which contradicts the main goal of minimizing damage and disturbance. How to avoid this innate collision was the main concern in our study. Highland habitats are suitable for addressing this problem, since they are relatively species-poor and therefore easier to analyze. Invertebrate distributions are, to some extent, expected to vary congruently with habitat type (HT) distributions. However, studies of such effects are scarce. In this study we researched harvestmen (Opiliones) in highland habitats above 1,800 m in the Kamnik-Savinja Alps, a Natura 2000 area in Slovenia. The question was whether mapping of HT distributions could predict the presence of the harvestman species and replace their laborious mapping. For this purpose, we studied relationships between the HT distributions and the harvestman species distributions with respect to environmental conditions. Chao2 and Jackknife1 were found to provide the best estimates of total species diversity. In assessing the species richness, the incidence-based approach was applied. No indicator harvestman species for the HTs, and no statistical difference was found in the harvestman community structure of three most frequently inhabited HTs. Most HTs and harvestman species responded gradually and in parallel to the changing environmental conditions along the altitudinal gradient, revealing covariation of their distributions. Hence, knowledge of highland HT distributions cannot replace the mapping of harvestmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ARSO (2001) Podnebne razmere v Sloveniji (Obdobje 1971–2000). Agencija Republike Slovenije za okolje, Ljubljana

    Google Scholar 

  • ARSO (2010) Agencija Republike Slovenije za okolje. http://meteo.arso.gov.si/met/sl/climate/maps/

  • Braun-Blanquet J (1964) Pflanzensoziologie, Grundzüge der Vegetationskunde, 3rd edn. Springer, Wien

    Book  Google Scholar 

  • Broll G (1998) Diversity of soil organisms in alpine and arctic soils in Europe. Review and research needs. Pirineos 151–152:43–72

    Article  Google Scholar 

  • Brooker RW, Callaway RM, Cavieres LA, Kikvitze Z, Lortie CJ, Michalet R et al (2009) Don’t diss integration: a comment on Ricklef’s disintegrating communities. Am Nat 174:919–927

    PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, p 488

    Google Scholar 

  • Callaway RM (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143–149

    Article  PubMed  Google Scholar 

  • Caporiacco LD (1922) Saggio sulla fauna arachnologica della Carnia e regioni limitrofe. Mem Soc Entomol Ital 1:60–111

    Google Scholar 

  • Čelik T, Bräu M, Bonelli S, Cerrato C, Vreš B, Balletto E, Stettmer C, Dolek M (2015) Winter-green host-plants, litter quantity and vegetation structure are key determinants of habitat quality for Coenonympha oedippus in Europe. J Insect Conserv 19:359–375. doi:10.1007/s10841-014-9736-3

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. Persistent http://purl.oclc.org/estimates. Accessed 14 Apr 2014

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. doi:10.1890/08-1823.1

    Article  PubMed  Google Scholar 

  • Devilliers P, Devilliers-Terschuren J (1996) A classification of Palearctic habitats. Council of Europe, Strasbourg

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366. doi:10.1890/0012-9615

    Google Scholar 

  • ESRI (2010) ArcGIS Desktop. Release 9.3. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • EUR27 (2007) Natura 2000. Interpretation manual of European Union habitats. European commission DG environment. Nature and Biodiversity, Strasbourg

    Google Scholar 

  • FAO (2006) Guidelines for soil description, 4th edn. FAO, Rome

    Google Scholar 

  • FAO/IIASA/ISRIC/ISS-CAS/JRC (2012) Harmonized World soil database (version 1.2). FAO, Rome, and IIASA, Laxenburg

  • Finch O-D, Löffler J (2010) Indicators of species richness at the local scale in an alpine region: a comparative approach between plant and invertebrate taxa. Biodivers Conserv 19:1341–1352

    Article  Google Scholar 

  • GERK (2010) Pedološke karte in pedoloških profilov. Ministrstvo za kmetijstvo gozdarstvo in prehrano. Grafični in pisni podatki (shape, dbf), Ljubljana

    Google Scholar 

  • Goode MJ, Horrace WC, Sredl MJ, Howland JM (2004) Habitat destruction by collectors associated with decreased abundance of rock-dwelling lizards. Biol Conserv 125(1):47–54

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Frontiers in measuring biodiversity. Oxford Univ Press, New York

    Google Scholar 

  • GURS (2010) Digitalni model višin Slovenije 12,5 × 12,5. Geodetska uprava Republike Slovenije, Ljubljana

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Holmquist JG, Jones JR, Schmidt-Gengenbach J, Pierotti LF, Love JP (2011) Terrestrial and aquatic macroinvertebrate assemblages as a function of wetland type across a mountain landscape. Arct Antarct Alp Res 43:568–584

    Article  Google Scholar 

  • Homburger H, Hofer G (2012) Diversity change of mountain hay meadows in the Swiss Alps. Basic Appl Ecol 13:132–138

    Article  Google Scholar 

  • Jogan N, Kaligarič M, Leskovar I, Seliškar A, Dobravec J (2004) Habitatni tipi Slovenije HTS 2004, tipologija. Agencija Republike Slovenije za okolje, Ljubljana

    Google Scholar 

  • Kaligarič M, Ivajnšič D (2014) Vanishing landscape of the “classic” Karst: changed landscape identity and projections for the future. Landsc Urban Plan 132:148–158

    Article  Google Scholar 

  • Kaufmann R (2001) Invertebrate succession on an alpine glacier foreland. Ecology 82:2261–2278

    Article  Google Scholar 

  • Komposch C (1998) Megabunus armatus und lesserti, zwei endemische Weberknechte in den Alpen (Opiliones: Phalangiidae). Carinthia II 188:619–627

    Google Scholar 

  • Komposch C (2011) Endemic harvestmen and spiders of Austria (Arachnida: Opiliones, Araneae). Arachnol Mitt 40:65–79

    Article  Google Scholar 

  • Komposch C, Gruber J (1999) Vertical distribution of harvestmen in the Eastern Alps (Arachnida: Opiliones). Bull Br Arachnol Soc 11:131–135

    Google Scholar 

  • Leingärtner A, Krauss J, Steffan-Dewenter I (2014) Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 175:613–623

    Article  PubMed  Google Scholar 

  • Marcellino I (1975) Opilioni (Arachnida) delle Alpi occidentali. Boll Mus Civ St Nat Verona 2:119–144

    Google Scholar 

  • Marcellino I (1988) Opilionidi (Arachnida, Opiliones) di ambienti montani ed alpini delle Dolomiti. Studi Trent Sc Nat Suppl 64:441–465

    Google Scholar 

  • Martens J (1978) Weberknechte, Opiliones. Die Tierwelt Deutschl 64:1–464

    Google Scholar 

  • Martinčič A, Wraber T, Jogan N, Ravnik V, Podobnik A, Turk B et al. (2007) Mala flora Slovenije. Tehniška založba Slovenije, Ljubljana

    Google Scholar 

  • McCain CM, Grytnes J-A (2010) Elevational gradients in species richness. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0022548

  • Mehrabi Z, Slade EM, Solis A, Mann DJ (2014) The importance of microhabitat for biodiversity sampling. PLoS ONE 9(12):e114015. doi:10.1371/journal.pone.0114015

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalet R, Touzard B (2010) Biotic interactions, biodiversity and community productivity. In: Pugnaire FI (ed) Positive plant interactions and community dynamics, CRC, Boca Raton, pp 59–78

    Chapter  Google Scholar 

  • Mitov GP, Stoyanov LI (2005) Ecological profiles of harvestmen (Arachnida, Opiliones) from Vitosha mountain (Bulgaria): a mixed modelling approach using GAMS. J Arachnol 33:256–268

    Article  Google Scholar 

  • Moss D (2008) EUNIS habitat classification—a guide for users. European Topic Centre on Biological Diversity. European Environmental Agency, Luxembourg. http://bd.eionet.europa.eu. Accessed 26 June 2016

  • Muster C (2002) Substitution patterns in congeneric arachnid species in the northern Alps. Divers Distrib 8:107–121

    Article  Google Scholar 

  • Noel NM, Finch OD (2010) Effects of the abandonment of alpine summer farms on spider assemblages (Araneae). J Insect Conserv 14:427–438

    Article  Google Scholar 

  • Novak T, Lipovšek Delakorda S, Senčič L, Pabst MA, Janžekovič F (2004) Adaptations in phalangiid harvestmen Gyas annulatus and G. titanus to their preferred water current adjacent habitats. Acta Oecol 26:45–53

    Article  Google Scholar 

  • Novak T, Slana Novak L, Janžekovič F, Kozel P (2016) Hot-Dancing method for extracting thanatotic arachnids from a substrate. Entomol News 126:121–127. doi:10.3157/021.126.0207

    Article  Google Scholar 

  • Official Gazette of the Republic of Slovenia 49 2004 Natura 2000 Network. Ljubljana

  • Pellissier L, Alvarez N, Espíndola A, Pottier J, Dubuis A, Pradervand et al (2012) Phylogenetic alpha and beta diversities of butterfly communities correlate with climate in the western Swiss Alps. Ecography 35:1–10

    Article  Google Scholar 

  • PZS (1998) 1:25.000. Grintovci mountaineer map. Planinska zveza Slovenije, Ljubljana

    Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Redpath SM, Bhatia S, Yang J (2014) Tilting at wildlife: reconsidering human–wildlife conflict. Oryx 49:222–225. doi:10.1017/S0030605314000799

    Article  Google Scholar 

  • Redpath SM, Gutiérrez RJ, Wood KA, Sidaway R, Young JC (2015) An introduction to conservation conflicts. In: Redpath SM, Gutiérrez RJ, Wood KA, Young JC (eds), Conflicts in conservation: navigating towards solutions, Cambridge Univ Press, Cambridge, pp 3–15

    Chapter  Google Scholar 

  • Reese GC, Wilson KR, Flather CH (2014) Performance of species richness estimators across assemblage types and survey parameters. Global Ecol Biogeogr 23:585–594

    Article  Google Scholar 

  • Šajna N, Kušar P, Slana Novak L, Novak T (2011) Benefits of low-intensive grazing: co-occurrence of umbelliferous plant (Hladnikia pastinacifolia Rchb.) and opilionid species (Phalangium opilio L.) in dry, calcareous grassland. Pol J Ecol 59:777–786

    Google Scholar 

  • Scherrer D, Törner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Schoeman DS, Nel R, Soares AG (2008) Measuring species richness on sandy beach transects: extrapolative estimators and their implications for sampling effort. Marine Ecol 29(Suppl 1):134–149

    Article  Google Scholar 

  • Seliškar A (1998) The habitat mapping in Slovenia—connection to the vegetation units. Working document, CORINE-PHARE project. Institute of Biology at the Centre of Scientific Research of the Slovenian Academy of Sciences and Arts, Ljubljana

  • Szinetár C, Samu F (2012) Intensive grazing opens spider assemblage to invasion by disturbance-tolerant species. J Arachnol 40:59–70

    Article  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Section on permutation methods. Microcomputer Power, USA, NY, Ithaca

  • Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829

    Article  Google Scholar 

  • Wood 2017. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation.R package version 1.8–17. Available from https://CRAN.R-project.org/package=mgcv Accessed 7 Mar 2017

  • Wyborn C, von Kerkhoff L, Dunlop M, Dudley N, Guevara O (2016) Future oriented conservation: knowledge governance, uncertainty and learning. Biodivers Conserv 25:1401–1408. doi:10.1007/s10531-016-1130-x

    Article  Google Scholar 

  • Zingerle V (1999) Spider and harvestman communities along a glaciation transect in the Italian Dolomites. J Arachnol 27:222–228

    Google Scholar 

  • Żmihorski M, Sienkiewicz P, Tryjanowski P (2013) Never ending story: a lesson in using sampling efficiency methods with ground beetles. J Insect Conserv 17:333–337. DOI:10.1007/s10841-012-9514-z

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Savaliev AA, Smith GM (2009) Mixed effect models and extensions in ecology with R. Springer, Berlin, p 574

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

Download references

Acknowledgements

We thank Marko Goličnik, Saška Lipovšek, Bernarda Pačnik, Matej Pačnik, Jure Tostovršnik and Marija Verbuč for help with the field investigations. We are indebted to Axel Schönhofer for a substantial revision of the initial version of the manuscript and help with Trogulus determinations. We are grateful to Michelle Gadpaille for valuable improvements to the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tone Novak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, T., Janžekovič, F., Rak, M. et al. Can highland habitat type distributions replace mapping of harvestman species?. J Insect Conserv 21, 331–343 (2017). https://doi.org/10.1007/s10841-017-9979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-9979-x

Keywords

Navigation