Skip to main content
Log in

Microclimate and biotic interactions affect Karner blue butterfly occupancy and persistence in managed oak savanna habitats

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Factors affecting site microclimate are important for the maintenance of populations, particularly during stochastic weather events. The federally endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov) has faced population declines throughout its range, most recently in 2012 following a severe drought throughout the Great Lakes region. This research builds upon previous work to understand what microclimate and biotic factors predict L. m. samuelis site occupancy. To gain an understanding of what habitat characteristics are conducive to L. m. samuelis survival during severe stochastic weather events, previously occupied sites were compared with currently occupied and restored sites in Allegan State Game Area, Michigan and the Oak Openings region of Ohio using variables significant in a predictive model. The heat load variable accounted for 64–67% of the variation in the model alone while individual biotic variables accounted for <5% of the model variation individually. The density of flowering lupine, ant entrance densities and heat load were higher in occupied sites while formerly occupied sites had higher woody stem density and canopy cover. These data show that site microclimate and factors affecting L. m. samuelis larval growth and reproduction affect distribution and persistence in stochastic environments. These findings can be incorporated in habitat management plans to create climate resilient refugia for current populations and increase the probability of reintroduction success in restored areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis. Technical Memorandum NESDIS NGDC-24. NOAA, Colorado 19pp.

    Google Scholar 

  • Andersen AN, Müller WJ (2000) Arthropod responses to experimental fire regimes in an Australian tropical savannah: ordinal-level analysis. Austral Ecol 25:199–209. doi:10.1046/j.1442-9993.2000.01038.x

    Article  Google Scholar 

  • Anderson RC, Leahy T, Dhillion SS (1989) Numbers and biomass of selected insect groups on burned and unburned sand prairie. Am Midl Nat 122:151–162. doi:10.2307/2425692

    Article  Google Scholar 

  • Anderson BJ, Akçakaya HR, Araújo MB et al (2009) Dynamics of range margins for metapopulations under climate change. Proc Biol Sci 276:1415–1420. doi:10.1098/rspb.2008.1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ault TR, Henebry GM, de Beurs KM et al (2013) The false spring of 2012, earliest in North American record. Eos. Trans Am Geophys Union 94:181–182. doi:10.1002/2013EO200001

    Article  Google Scholar 

  • Baker RJ (1994) The Karner blue butterfly: 1993 and beyond. In: Andow DA, Baker RJ, Lane CP (eds) Karner blue butterfly: a symbol of vanishing landscape. University of Minnesota, St. Paul, pp 163–169

    Google Scholar 

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of european forests. For Ecol Manage 132:39–50. doi:10.1016/S0378-1127(00)00378-9

    Article  Google Scholar 

  • Bergman KO, Askling J, Ekberg O, et al (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography (Cop) 27:619–628. doi:10.1111/j.0906-7590.2004.03906.x

    Article  Google Scholar 

  • Best AS, Johst K, Münkemüller T, Travis JMJ (2007) References cited- honduran emerald status review: 12-month finding. Oikos 116:1531–1539. doi:10.1111/j.0030-1299.2007.16047.x

    Article  Google Scholar 

  • Bock CE, Bock JH (1991) Response of Grasshoppers (orthoptera, acrididae) to wildfire in a Southeastern Arizona grassland. Am Midl Nat 125:162–167. doi:10.2307/2426379

    Article  Google Scholar 

  • Boggs CL (2016) The fingerprints of global climate change on insect populations. Curr Opin Insect Sci 17:69–73.

    Article  PubMed  Google Scholar 

  • Bonham C (1989) Measurements for terrestrial vegetation, First Edit. John Wiley & Sons, New York, NY

    Google Scholar 

  • Brewer LG, Vankat JL (2004) Description of vegetation of the oak openings of Northwestern Ohio at the time of Euro-American settlement 1. Ohio J Sci 104:76–85.

    Google Scholar 

  • Campbell JW, Hanula JL, Waldrop TA (2007) Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biol Conserv 134:393–404. doi:10.1016/j.biocon.2006.08.029

    Article  Google Scholar 

  • Chan PK, Laurence P (2006) Assessment of potential Karner Blue Butterfly (Lycaeides melissa samuelis) (Family: Lycanidae) reintroduction sites in Ontario, Canada. Restor Ecol 14:645–652. doi:10.1111/j.1526-100X.2006.00176.x

    Article  Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical Partitioning. Am Stat 45:90–96. doi:10.2307/2684366

    Google Scholar 

  • Cleary DFR, Mooers A, Eichhorn KAO et al (2004) Diversity and community composition of butterflies and odonates in an ENSO-induced fire affected habitat mosaic: a case study from East Kalimantan, Indonesia. Oikos 105:426–446. doi:10.1111/j.0030-1299.2004.12219.x

    Article  Google Scholar 

  • Cresswell JE, Galen C (1991) Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. Am Nat 138:1342. doi:10.1086/285290

    Article  Google Scholar 

  • Cushman JH, Rashbrook VK, Beattie AJ (1994) Assessing benefits to both partners in a lycaenid-ant association. Ecology 75:1031–1041

    Article  Google Scholar 

  • Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75:247–256. doi:10.1111/j.1365-2656.2006.01044.x

    Article  PubMed  Google Scholar 

  • De Palma A, Dennis RLH, Brereton T, et al (2016) Large reorganizations in butterfly communities during an extreme weather event. Ecography (Cop). doi:10.1111/ecog.02228

    Google Scholar 

  • Dennis RLH, Sparks TH (2006) When is a habitat not a habitat? Dramatic resource use changes under differing weather conditions for the butterfly Plebejus argus. Biol Conserv 129:291–301. doi:10.1016/j.biocon.2005.10.043

    Article  Google Scholar 

  • Dennis RLH, Dapporto L, Dover JW, Shreeve TG (2013) Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies. Biodivers Conserv 22:2709–2734

    Article  Google Scholar 

  • Dirig R (1994) Historical notes on wild lupine and the Karner blue butterfly at the Albany Pine Bush, New York. In: Andow DA, Baker RJ, Lane CP (eds) Karner blue butterfly: a symbol of vanishing landscape. University of Minnesota, St. Paul, pp 23–36

    Google Scholar 

  • Dobkin DS, Olivieri I, Ehrlich PR (1987) Rainfall and the interaction of microclimate with larval resources in the population dynamics of checkerspot butterflies (Euphydryas editha) inhabiting serpentine grassland. Oecologia 71:161–166. doi:10.1007/BF00377280

    Article  CAS  PubMed  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  CAS  PubMed  Google Scholar 

  • Elmqvist T, Folke C, Nyström M et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Eskildsen A, Carvalheiro LG, Kissling WD et al (2015) Ecological specialization matters: Long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers Distrib 21:792–802. doi:10.1111/ddi.12340

    Article  Google Scholar 

  • ESRI (2016) ArcGIS Desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute

    Google Scholar 

  • Fiedler K (1991) Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonn Zool Monogr 31:1–210.

    Google Scholar 

  • Folke C, Carpenter S, Walker B, et al (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581. doi:10.1146/annurev.ecolsys.35.021103.105711

    Article  Google Scholar 

  • Forsyth J (1959) The beach ridges of Northern Ohio. Ohio Geological Survey Information Circular 25.

  • GIMP Development Team (2015) GNU image manipulation program, release 2.8.16. http://www.gimp.org

  • Gripenberg S, Roslin T (2005) Host plants as islands: resource quality and spatial setting as determinants of insect distribution. Ann Zool Fennici 42:335–345

    Google Scholar 

  • Grossmann EB, Mladenoff DJ (2007) Open woodland and savanna decline in a mixed-disturbance landscape (1938 to 1998) in the Northwest Wisconsin (USA) Sand Plain. Landsc Ecol 22:43–55. doi:10.1007/s10980-007-9113-7

    Article  Google Scholar 

  • Grundel R, Pavlovic NB (2007) Resource availability, matrix quality, microclimate, and spatial pattern as predictors of patch use by the Karner blue butterfly. Biol Conserv 135 135–144.

    Article  Google Scholar 

  • Grundel R, Pavlovic NB, Sulzman CL (1998) Habitat use by the endangered Karner blue butterfly in oak woodlands: the influence of canopy cover. Biol Conserv 85:47–53. doi:10.1016/S0006-3207(97)00165-1

    Article  Google Scholar 

  • Grundel R, Pavlovic NB, Sulzman CL (2000) Nectar plant selection by the karner blue butterfly (Lycaeides melissa samuelis) at the Indiana Dunes National Lakeshore. Am Midl Nat 144:1–10. doi:10.1674/0003-0031(2000)144[0001:NPSBTK]2.0.CO;2

    Article  Google Scholar 

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167–180. doi:10.1016/0006-3207(94)90348-4

    Article  Google Scholar 

  • Hellmann JJ (2002) The effect of an environmental change on mobile butterfly larvae and the nutritional quality of their hosts. J Anim Ecol 71:925–936. doi:10.1046/j.1365-2656.2002.00658.x

    Article  Google Scholar 

  • Hellmann JJ, Grundel R, Hoving C, Schuurman GW (2016) A call to insect scientists: challenges and opportunities of managing insect communities under climate change. Curr Opin Insect Sci 17:92–97.

    Article  PubMed  Google Scholar 

  • Hickling R, Roy DB, Hill JK, et al (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455. doi:10.1111/j.1365-2486.2006.01116.x

    Article  Google Scholar 

  • Hill JK, Thomas CD, Huntley B (1999) Climate and habitat avaliability determine 20th century change in a butterfly’s range margin. Proc R Soc London B 266:1197–1206.

    Article  Google Scholar 

  • Holl KD (1995) Nectar resources and their influence on butterfly communities on reclaimed coal surface mines. Restor Ecol 3:76–85. doi:10.1111/j.1526-100X.1995.tb00080.x

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29(1):83–112. doi:10.1146/annurev.ecolsys.29.1.83.x

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Center (ICRAF), Nairobi

    Google Scholar 

  • Klingenbock A, Osterwalder K, Shine R (2000) Habitat use and thermal biology of the “Land Mullet” Egernia major, a large scincid lizard from remnant rain forest in southeastern Australia. Copeia 2000:931–939. doi:10.1643/0045-8511(2000)000[0931:HUATBO]2.0.CO;2

    Article  Google Scholar 

  • Kocsis M, Hufnagel L (2011) Impacts of climate change on Lepidoptera species and communities. Appl Ecol Environ Res 9:43–72

    Article  Google Scholar 

  • Lane CP, Andow DA (2003) Oak Savanna subhabitat variation and the population biology of Lycaeides melissa samuelis (Lepidoptera: Lycaenidae). Ann Entomol Soc Am 96:799–809. doi:10.1603/0013-8746(2003)096[0799:OSSVAT]2.0.CO;2

    Article  Google Scholar 

  • Lawrence WS (1994) Karner blue butterfly populations in the Allegan state game area, Michigan. In: Andow DA, Baker RJ, Lane CP (eds) Karner blue butterfly: a symbol of vanishing landscape. University of Minnesota, St. Paul, pp 53–62

    Google Scholar 

  • Luoto M, Heikkinen RK (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob Chang Biol 14:483–494. doi:10.1111/j.1365-2486.2007.01527.x

    Article  Google Scholar 

  • Mallya G, Zhao L, Song XC et al (2013) 2012 Midwest drought in the United States. J Hydrol Eng 18:737–745. doi:10.1061/(ASCE)HE.1943-5584.0000786

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606. doi:10.1111/j.1654-1103.2002.tb02087.x

    Article  Google Scholar 

  • Miller RF, Chambers JC, Pyke DA et al (2013) A review of fire effects on vegetation and soils in the Great basin region: response and ecological site characteristics. USDA Forest Service-General Technical Report RMRS-GTR

  • Murphy DD, Launer AE, Ehrlich PR (1983) The role of adult feeding in egg production and population dynamics of the checkerspot butterfly Euphydryas editha. Oecologia 56:257–263. doi:10.1007/BF00379699

    Article  PubMed  Google Scholar 

  • Nicolson SW, Thronburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 215–264

    Chapter  Google Scholar 

  • Nuzzo VA (1986) Extent and status of midwest oak savanna: presettlement and 1985. Nat Areas Journal 6:6–36.

    Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, et al (2015) vegan: community ecology package: https://cran.r-project.org/web/packages/vegan/vegan.pdf.

  • Opler P, Malilul V (1998) A field guide to eastern butterflies. Houghton Mifflin Co., Boston

    Google Scholar 

  • Papp C (1996) The endangered Karner blue butterfly (Lepidoptera:Lycaenidae) in Michigan: habitat suitability, potential impacts of gypsy moth (Lepidoptera:Lymantriidae) suppression, and laboratory rearing. Michigan State University, East Lansing

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Root TL (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443. doi:10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Williams-Anderson A, Moskwik M et al (2015) Endangered Quino checkerspot butterfly and climate change: short-term success but long-term vulnerability? J Insect Conserv 19:185–204. doi:10.1007/s10841-014-9743-4

    Article  Google Scholar 

  • Peterson MA (1993) The nature of ant attendance and the survival of larval Icaricia acmon (Lycaenidae). J Lepid Soc 47:8–16

    Google Scholar 

  • Pickens BA, Root KV (2008) Factors affecting host-plant quality and nectar use for the Karner blue butterfly: implications for oak Savanna restoration. Nat Areas J 28:210–217. doi:10.3375/0885-8608(2008)28[210:FAHQAN]2.0.CO;2

    Article  Google Scholar 

  • Pierce NE, Easteal S (1986) The selective advantage of attendant ants for the larvae of a lycaenid butterfly Glaucopsyche lygdamus. J Anim Ecol 55:451–462

    Article  Google Scholar 

  • Pierce NE, Braby MF, Heath A et al (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771. doi:10.1146/annurev.ento.47.091201.145257

    Article  CAS  PubMed  Google Scholar 

  • Plowright RC (1981) Nectar production in the boreal forest lily Clintonia borealis. Can J Bot 59:156–160. doi:10.1139/b81-025

    Article  Google Scholar 

  • Plowright RC (1987) Corolla depth and nectar concentration: an experimental study. Can J Bot 65:1011–1013. doi:10.1139/b87-139

    Article  Google Scholar 

  • Pollard E (1979) Population ecology and change in range of the white admiral butterfly Ladoga camilla L. In England. Ecol Entomol 4:61–74. doi:10.1111/j.1365-2311.1979.tb00561.x

    Article  Google Scholar 

  • Pollard E (1988) Temperature, rainfall and butterfly numbers. J Appl Ecol 25:819–828. doi:10.2307/2403748

    Article  Google Scholar 

  • Pöyry J, Luoto M, Heikkinen RK, et al (2009) Species traits explain recent range shifts of Finnish butterflies. Glob Chang Biol 15:732–743. doi:10.1111/j.1365-2486.2008.01789.x

    Article  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Chang Biol 6:407–416. doi:10.1046/j.1365-2486.2000.00322.x

    Article  Google Scholar 

  • Roy DB, Rothery P, Moss D et al (2008) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J Anim Ecol 70:201–217. doi:10.1111/j.1365-2656.2001.00480.x

    Article  Google Scholar 

  • Saarinen E V., Daniels JC (2006) Miami blue butterfly larvae (Lepidoptera: Lycaenidae) and ants (Hymeoptera: Formicidae): new information on the symbionts of an endangered taxon. Florida Entomol 89:69–74. doi:10.1653/0015-4040(2006)89[69:mbblll]2.0.co;2

    Article  Google Scholar 

  • Sánchez-Guillén RA, Córdoba-Aguilar A, Hansson B et al (2016) Evolutionary consequences of climate-induced range shifts in insects. Biol Rev 91:1050–1064. doi:10.1111/brv.12204

    Article  PubMed  Google Scholar 

  • Sawchik J, Dufrêne M, Lebrun P (2003) Estimation of habitat quality based on plant community, and effects of isolation in a network of butterfly habitat patches. Acta Oecologica 24:25–33. doi:10.1016/S1146-609X(02)00005-X

    Article  Google Scholar 

  • Scheffers BR, Edwards DP, Diesmos A, et al (2014) Microhabitats reduce animal’s exposure to climate extremes. Glob Chang Biol 20:495–503. doi:10.1111/gcb.12439

    Article  PubMed  Google Scholar 

  • Schetter TA, Root KV (2011) Assessing an imperiled Oak Savanna landscape in northwestern Ohio using landsat data. Nat Areas J 31:118–130. doi:10.3375/043.031.0204

    Article  Google Scholar 

  • Schultz CB, Crone EE (2005) Patch size and connectivity thresholds for butterfly habitat restoration. Conserv Biol 19:887–896. doi:10.1111/j.1523-1739.2005.00462.x

    Article  Google Scholar 

  • Schultz CB, Crone EE (2015) Using ecological theory to develop recovery criteria for an endangered butterfly. J Appl Ecol 52:1111–1115. doi:10.1111/1365-2664.12450

    Article  Google Scholar 

  • Serrat A, Pons P, Puig-Girones R, Stefanescu C (2015) Environmental factors influencing butterfly abundance after a severe wildfire in Mediterranean vegetation. Anim. Biodivers Conserv 38:207–220

    Google Scholar 

  • Shuey JA (1997) Dancing with fire: ecosystem dynamics, management, and the Karner blue (Lycaeides melissa samuelis Nabokov)(Lycaenidae). J Lepid Soc 51:263–269

    Google Scholar 

  • Smallidge PJ, Leopold DJ (1997) Vegetation management for the maintenance and conservation of butterfly habitats in temperate human-dominated landscapes. Landsc Urban Plan 38:259–280. doi:10.1016/S0169-2046(97)00038-8

    Article  Google Scholar 

  • Smee M, Smyth W, Tunmore M et al (2011) Butterflies on the brink: Habitat requirements for declining populations of the marsh fritillary (Euphydryas aurinia) in SW England. J Insect Conserv 15:153–163. doi:10.1007/s10841-010-9334-y

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  • Southwell DM, Hauser CE, McCarthy MA (2016) Learning about colonization when managing metapopulations under an adaptive management framework. Ecol Appl 26:279–294. doi:10.1890/14-2430.1/suppinfo

    Article  PubMed  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456. doi:10.1046/j.1461-0248.2000.00175.x

    Article  Google Scholar 

  • Suggitt AJ, Gillingham PK, Hill JK et al (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120:1–8. doi:10.1111/j.1600-0706.2010.18270.x

    Article  Google Scholar 

  • Swengel AB (2001) A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers Conserv 10:1141–1169. doi:10.1023/A:1016683807033

    Article  Google Scholar 

  • Swengel AB, Swengel SR (2007) Benefit of permanent non-fire refugia for Lepidoptera conservation in fire-managed sites. J Insect Conserv 11:263–279. doi:10.1007/s10841-006-9042-9

    Article  Google Scholar 

  • Team RC (2014) R: A language and environment for statistical computing.

  • Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495

    Article  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, et al (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc London Ser B Biol Sci 268:1791–1796. doi:10.1098/rspb.2001.1693

    Article  CAS  Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • Turlure C, Choutt J, Baguette M, Van Dyck H (2009) Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob Chang Biol 16:1883–1893. doi:10.1111/j.1365-2486.2009.02133.x

    Article  Google Scholar 

  • Turlure C, Van Dyck H, Goffart P, Schtickzelle N (2014) Resource-based habitat use in Lycaena helle: significance of a function, ecological niche-oriented approach. In: Habel CJ, Meyer M, Schmitt T (eds) Jewels in the mist: a synopsis on the endangered violet copper butterfly Lycaena helle. Pensoft Publishers, Moscow, pp 67–85

    Google Scholar 

  • Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? butterflies, moths and the british climate. Oikos 48:195. doi:10.2307/3565855

    Article  Google Scholar 

  • U.S. Fish and Wildlife Service (1992) Endangered and threatened wildlife and plants: determination of endangered status of the Karner blue butterfly. Final Rule. Fed Regist 57:59236–59244

    Google Scholar 

  • U.S. Fish and Wildlife Service (2003) Final recovery plan for the Karner Blue Butterfly (Lycaeides melissa samuelis). Fort Snelling, Minnesota

  • U.S. Fish and Wildlife Service (2011) Update to KBB recovery plan; Inclusion of Michigan Oak Openings potential recovery unit. Greenbay, WI

  • USFW (2012) Karner Blue Butterfly 5-year review: summary and evaluation. New Franken, WI

  • Van Dyck H, Bonte D, Puls R et al (2015) The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124:54–61. doi:10.1111/oik.02066

    Article  Google Scholar 

  • Walsh C, Mac Nally R (2013) Hierarchical partitioning, package release 1.0-4. R project for statistical computing. http://cran.r-project.org

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  CAS  PubMed  Google Scholar 

  • Warchola N, Bastianelli C, Schultz CB, Crone EE (2015) Fire increases ant-tending and survival of the Fender’s blue butterfly larvae. J Insect Conserv 19:1063–1073. doi:10.1007/s10841-015-9822-1

    Article  Google Scholar 

  • Warren MS, Hill JK, Thomas JA et al (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69. doi:10.1038/35102054

    Article  CAS  PubMed  Google Scholar 

  • Weeks JA (2003) Parasitism and ant protection alter the survival of the lycaenid Hemiargus isola. Ecol Entomol 28:228–232. doi:10.1046/j.1365-2311.2003.00489.x

    Article  Google Scholar 

  • Wilson EO (1987) The Little things that run the world (the importance and conservation of invertebrates). Conserv Biol 1:344–346. doi:10.1111/j.1523-1739.1987.tb00055.x

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Chang Biol 13:1873–1887. doi:10.1111/j.1365-2486.2007.01418.x

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the Ohio Division of Wildlife for funding through the Ohio Wildlife Diversity grant as well as Peter Tolson, Mitch Magdich, Kent Bekker, Sarah Lahman, Cari Ritzenhaler, Paige Arnold, Jennifer Shimola, Kim Haddix and Justin Grubb for their assistance with conducting the research and manuscript preparation, as well as two anonymous reviewers for their insights and improvements of this manuscript. Work was conducted with an endangered species permit from US Fish and Wildlife (TE207180-1) obtained through the Ohio Division of Wildlife and site access permits from Michigan and Ohio Department of Natural Resources and The nature conservancy-oak openings region OH.

Funding

This study was funded by Wildlife Diversity Grants in 2015 & 2016 by the Ohio Department of Natural Resources-Division of Wildlife.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan P. Walsh.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, R.P. Microclimate and biotic interactions affect Karner blue butterfly occupancy and persistence in managed oak savanna habitats. J Insect Conserv 21, 219–230 (2017). https://doi.org/10.1007/s10841-017-9967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-9967-1

Keywords

Navigation