Skip to main content

Advertisement

Log in

Population turnover, habitat use and microclimate at the contracting range margin of a butterfly

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Climate change is expected to drive patterns of extinction and colonisation that are correlated with geographic gradients in the climate, such as latitude and elevation. However, local population dynamics also depend on the fine-scale effects of vegetation and topography on resource availability and microclimate. Understanding how this fine-scale variation influences population survival in the face of changing climatic favourability could provide clues for adapting conservation to climate change. Here, we document a long-term decline of the butterfly Parnassius apollo in the Sierra de Guadarrama mountain range in central Spain, and examine recent population turnover and habitat use by the species to make inferences about its ecology and conservation. A decline since the 1960s throughout the elevation range suggests a regional deterioration in favourability for the species. Since 2006, local habitat quality has been the main correlate of population persistence, with populations that persisted from 2006 to 2012 associated with high availability of larval host plants. At a finer resolution, the larval distribution in a network of suitable habitat in 2011 and 2012 was most closely related to bare ground cover. Thus, although slope, aspect and elevation lead to considerable variation in microhabitat temperatures during the period of P. apollo larval development, vegetation structure appears to have been the most critical factor for local habitat use and population persistence. The results show that site selection and management retain key roles in conservation despite the broad-scale effects of environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashton S, Gutiérrez D, Wilson RJ (2009) Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecol Entomol 34:437–446

    Article  Google Scholar 

  • Bartoń K (2013) Package MuMIn: Multi-model inference. R package version 1.9.13. http://CRAN.R-project.org/package=MuMIn. Accessed 25 April 2014

  • Baz A (2002) Nectar plants for the threatened Apollo butterfly (Parnassius apollo L. 1758) in populations of central Spain. Biol Conserv 103:277–282

    Article  Google Scholar 

  • Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54

    Article  Google Scholar 

  • Bennie J, Hodgson JA, Lawson CR, Holloway CTR, Roy DB, Brereton T, Thomas CD, Wilson RJ (2013) Range expansion through fragmented landscapes under a variable climate. Ecol Lett 16:921–929

    Article  PubMed Central  PubMed  Google Scholar 

  • Boggs CL, Inouye DW (2012) A single climate driver has direct and indirect effects on insect population dynamics. Ecol Lett 15:502–508

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Chen I, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011a) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chen I, Hill JK, Shiu H, Holloway JD, Benedick S, Chey VK, Barlow HS, Thomas CD (2011b) Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob Ecol Biogeogr 20:34–45

    Article  Google Scholar 

  • de las Heras P, Fernández-Sañudo P, López-Estébanez N, Roldán MJ (2011) Territorial and boundary effects in a protected area of the Central Iberian Peninsula. Cent Eur J Geosci 3:1–11

    Article  Google Scholar 

  • Deschamps-Cottin M, Roux M, Descimon H (1997) Valeur trophique des plantes nourricières et préférence de ponte chez Parnassius apollo L. (Lepidoptera, Papilionidae). CR Acad Sci III-Vie 320:399–406

    Article  Google Scholar 

  • Descimon H, Bachelard P, Boitier E, Pierrat V (2005) Decline and extinction of Parnassius apollo populations in France-continued. In: Kühn E, Feldmann R, Thomas JA, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe, vol 1., General concepts and case studiesPensoft, Sofia pp, pp 114–115

    Google Scholar 

  • ESRI (2001) ArcGIS 8.1. Environmental Systems Research Institute Inc, Redlands

    Google Scholar 

  • Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004

    Article  Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Chang Biol 12:1545–1553

    Article  Google Scholar 

  • Fred MS, Brommer JE (2005) The decline and current distribution of Parnassius apollo (Linnaeus) in Finland: the role of Cd. Ann Zool Fenn 42:69–79

    Google Scholar 

  • Fu P, Rich PM (2000) The solar analyst 1.0 user manual. Helios Environmental Modelling Institute, Lawrence

    Google Scholar 

  • García-Barros E, Munguira ML, Cano JM, Romo H, Garcia-Pereira P, Maravalhas ES (2004) Atlas of the butterflies of the Iberian Peninsula and Balearic Islands (Lepidoptera: Papilionoidea and Hesperioidea). Sociedad Entomológica Aragonesa, Zaragoza

    Google Scholar 

  • Gillingham PK, Palmer SCF, Huntley B, Kunin WE, Chipperfield JD, Thomas CD (2012) The relative importance of climate and habitat in determining the distributions of species at different spatial scales: a case study with ground beetles in Great Britain. Ecography 35:831–838

    Article  Google Scholar 

  • Giménez-Benavides L, Escudero A, Iriondo JM (2007) Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytol 173:367–382

    Article  PubMed  Google Scholar 

  • Gutiérrez Illán J, Gutiérrez D, Wilson RJ (2010) The contributions of topoclimate and land cover to species distributions and abundance: fine resolution tests for a mountain butterfly fauna. Glob Ecol Biogeogr 19:159–173

    Article  Google Scholar 

  • Gutiérrez D, Wilson RJ (2014) Climate conditions and resource availability drive return elevational migrations in a single-brooded insect. Oecologia 175:861–873

    Article  PubMed  Google Scholar 

  • Gutiérrez D, Harcourt J, Díez SB, Gutiérrez Illán J, Wilson RJ (2013) Models of presence–absence estimate abundance as well as (or even better than) models of abundance: the case of the butterfly Parnassius apollo. Landsc Ecol 28:401–413

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Lawson CR, Bennie J, Thomas CD, Hodgson JA, Wilson RJ (2012) Local and landscape management of an expanding range margin under climate change. J Appl Ecol 49:552–561

    Google Scholar 

  • Lawson CR, Bennie J, Hodgson JA, Thomas CD, Wilson RJ (2014) Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography 37:732–740

    Article  Google Scholar 

  • Merrill RM, Gutiérrez D, Lewis OT, Gutiérrez J, Díez SB, Wilson RJ (2008) Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J Anim Ecol 77:145–155

    Article  PubMed  Google Scholar 

  • Monserrat VJ (1976) La distribución ecológica de las mariposas diurnas del Guadarrama. Tesis, Universidad Complutense de Madrid, Madrid

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264

    Article  CAS  PubMed  Google Scholar 

  • Nieminen M, Nuorteva P, Tulisalo E (2001) The effect of metals on the mortality of Parnassius apollo larvae (Lepidoptera: Papilionidae). J Insect Conserv 5:1–7

    Article  Google Scholar 

  • O’Connor RS, Hails RS, Thomas JA (2014) Accounting for habitat when considering climate: has the niche of the Adonis blue butterfly changed in the UK? Oecologia 174:1463–1472

    Article  PubMed  Google Scholar 

  • Oliver TH, Roy DB, Brereton T, Thomas JA (2012) Reduced variability in range-edge butterfly populations over three decades of climate warming. Glob Chang Biol 18:1531–1539

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, London

    Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 17 March 2014

  • Richards SA (2005) Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology 86:2805–2814

    Article  Google Scholar 

  • Richards SA (2008) Dealing with overdispersed count data in applied ecology. J Appl Ecol 45:218–227

    Article  Google Scholar 

  • Roland J, Matter SF (2007) Encroaching forests decouple alpine butterfly population dynamics. Proc Natl Acad Sci USA 104:13702–13704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roland J, Matter SF (2013) Variability in winter climate and winter extremes reduces population growth of an alpine butterfly. Ecology 94:190–199

    Article  PubMed  Google Scholar 

  • Sánchez-Rodríguez JF, Baz A (1996) Decline of Parnassius apollo in the Sierra de Guadarrama, Central Spain (Lepidoptera: Papilionidae). Holarct Lepid 3:31–36

    Google Scholar 

  • Schmeller DS, Dolek M, Geyer A, Settele J, Brandl R (2011) The effect of conservation efforts on morphological asymmetry in a butterfly population. J Natl Conserv 19:161–165

    Article  Google Scholar 

  • Settele J, Kudrna O, Harpke A et al (2008) Climatic risk atlas of European butterflies. BioRisk 1 special issue. Pensoft, Sofia-Moscow

  • Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, Thomas CD (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120:1–8

    Article  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Chang 2:686–690

    Article  Google Scholar 

  • Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495

    Article  Google Scholar 

  • Thomas CD, Franco A, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • Tingley MW, Beissinger SR (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol Evol 24:625–633

    Article  PubMed  Google Scholar 

  • Tolman T, Lewington R (1997) Butterflies of Britain and Europe. HarperCollins, London

    Google Scholar 

  • Van Swaay C, Cuttlelod A, Collins S et al (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Weiss SB, Murphy DD, White RR (1988) Sun, slope and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D (2012) Effects of climate change on the elevational limits of species ranges. In: Beever EA, Belant JL (eds) Ecological consequences of climate change: mechanisms, conservation, and management. Taylor and Francis, Boca Raton, pp 107–131

    Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

V. J. Monserrat provided access to historical data. J. Gutiérrez Illán, J. Harcourt, D. M. Gray, S. Ashton, and S. B. Díez assisted with fieldwork and data processing. Research was funded by Universidad Rey Juan Carlos/Comunidad de Madrid (URJC-CM-2006-CET-0592), the Spanish Ministry of Education and Science with an F.P.U. Scholarship and Research Projects (REN2002-12853-E/GLO, CGL2005-06820/BOS, CGL2008-04950/BOS and CGL2011-30259), and the Royal Society of London (International Joint Project “Climate change and metapopulation dynamics at a contracting range margin”). Access and research permits were provided by Comunidad de Madrid, Parque Natural de Peñalara, Parque Regional de la Cuenca Alta del Manzanares, Parque Regional del Curso Medio del Río Guadarrama, Patrimonio Nacional and Ayuntamiento de Cercedilla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, R.J., Bennie, J., Lawson, C.R. et al. Population turnover, habitat use and microclimate at the contracting range margin of a butterfly. J Insect Conserv 19, 205–216 (2015). https://doi.org/10.1007/s10841-014-9710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9710-0

Keywords

Navigation