Skip to main content

Advertisement

Log in

Environmental gradients and succession patterns of carabid beetles (Coleoptera: Carabidae) in an Alpine glacier retreat zone

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Accelerated by global warming, retreating glaciers leave behind spatially ordered moraines with underlying primary succession and disturbance. Current knowledge of primary succession comes mainly from studies of vegetation dynamics. Information about above-ground macroinvertebrates is still scarce. We used carabid beetles (Coleoptera; Carabidae) as indicator taxon to assess the effects of (1) terrain age (species turnover along the proglacial chronosequence) and (2) small-scale habitat architecture (vegetation cover, surface texture) on the carabid assembly. For this purpose, 33 sampling sites with pitfall traps were installed throughout the glacier foreland Morteratsch (Engadine, Switzerland), adjacent sparse forests serving as reference sites. With a total of 33 carabid species on the foreland and another 2 on the reference sites, the study area yielded a very high carabid species diversity compared to other glacier forelands. In general, the age of deglaciation proved to be a highly significant predictor for the carabid distribution, especially for particularly discriminant species. Observed species richness and activity densities showed bimodal patterns with a steep increase within the first ca. 40 years, a decline between around 40–90 years, and a further increase towards the terminal moraine. There was no evidence of dispersal-stochasticity: distinct clusters of sites with similar species composition were found. Microhabitat suitability proved to be a secondary effect, embedded in a temporal framework of primary succession. Surface cover with litter, herbs and dwarf-shrubs turned out to be the crucial habitat factors. Habitat loss as a result of climate warming will primarily affect cold-stenotopic carabids, but may potentially be absorbed by active selection for cooler microhabitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. syn. Bembidion cruciatum ssp. baenningeri in Müller-Motzfeld (2006)

References

  • Albrecht M, Riesen M, Schmid B (2010) Plant-pollinator network assembly along the chronosequence of a glacier foreland. Oikos 119(10):1610–1624. doi:10.1111/j.1600-0706.2010.18376.x

    Article  Google Scholar 

  • Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agr Ecosyst Environ 108:205–217. doi:10.1016/j.agee.2005.02.004

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM et al (2002) Herbivory in global climate change research: direct effect of rising temperature on insect herbivores. Global Change Biol 8:1–16. doi:10.1046/j.1365-2486.2002.00451.x

    Article  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground community ecology. Trends Ecol Evol 20:634–641. doi:10.1016/j.tree.2005.08.005

    Article  PubMed  Google Scholar 

  • Brandmayr P, Pizzolotto R, Scalercio S (2003) Overview: invertebrate diversity in Europe’s alpine regions. In: Nagy L, Grabherr G, Korner C, Thompson DBA (eds) Alpine Biodiversity in Europe, vol 167. Springer, Berlin, pp 233–237 and 307–317

  • Burga CA (1999) Vegetation development on the glacier forefield Morteratsch (Switzerland). Appl Veg Sci 2:17–24. doi:10.2307/1478877

    Article  Google Scholar 

  • Burga CA, Krüsi BO, Egli M, Wernli M, Elsener S, Ziefle M, Fischer T, Mavris C (2010) Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora 205(9):561–576. doi:10.1016/j.flora.2009.10.001

    Article  Google Scholar 

  • Caccianiga M, Andreis C (2004) Pioneer herbaceous vegetation on glacier forelands in the Italian Alps. Phytocoenologia 34:55–89. doi:10.1127/0340-269X/2004/0034-0055

    Article  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  • Clarke KR, Sommerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330(1):55–80. doi:10.1016/j.jembe.2005.12.017

    Article  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. User’s guide and application. Published at: http://purl.oclc.org/estimates

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B 345:101–118. doi:10.1098/rstb.1994.0091

    Article  CAS  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111(982):1119–1144

    Article  Google Scholar 

  • Dobson AP, Bradshaw AD, Baker AJM (1997) Hopes for the future: restoration ecology and conservation biology. Science 277:515–522. doi:10.1126/science.277.5325.515

    Article  CAS  Google Scholar 

  • Egli M, Wernli M, Kneisel C, Biegger S, Haeberli W (2006) Melting glaciers and soil development in the proglacial area Morteratsch (Swiss Alps): II. Modeling the present and future soil state. Arct Antarct Alp Res 38:510–521

    Article  Google Scholar 

  • Elsener S (2006) Besiedlungsdynamik von Arve und Lärche im Vorfeld des Morteratschgletschers. Unpublished diploma thesis. Department of Geography University of Zurich

  • Engelmann HD (1978) Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 18:378–380

    Google Scholar 

  • ETH Zurich (2010) Swiss glacier monitoring network (1881–2009). Laboratory of hydraulics, hydrology and glaciology VAW of ETH Zurich. http://glaciology.ethz.ch/swiss-glaciers. Accessed 18 May 2011

  • Franz H (1969) Besiedlung der jüngst vom Eise freigegebenen Gletschervorfelder und ihrer Böden durch wirbellose Tiere. Neue Forschungen im Umkreis der Glocknergruppe. Wissensch. Alpenvereinshefte 21:291–298

    Google Scholar 

  • Friden A (1971) Beetle fauna on the borders of some Scandinavian glaciers. Nor J Entomol 18(1):29–32

    Google Scholar 

  • Fuller RJ, Oliver TH, Leather SR (2008) Forest management effects on carabid beetle communities in coniferous and broadleaved forests: implications for conservation. Insect Conserv Diver 1:242–252. doi:10.1111/j.1752-4598.2008.00032.x

    Article  Google Scholar 

  • Geo7, UNA (red) (1998) Bestand hat nur der Wandel. Gletschervorfelder und alpine Schwemmebenen. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern (heute: BAFU)

  • Gereben BA (1995) Co-occurrence and microhabitat distribution of six nebria species (Coleoptera: Carabidae) in an Alpine Retreat Zone in the Alps, Austria. Arct Antarct Alp Res 27(4):371–379

    Google Scholar 

  • Gobbi M, De Bernardi F, Pelfini M, Rossaro B, Brandmayr P (2006a) Epigean Arthropod Succession along a 154-year Glacier Foreland Chronosequence in the Forni Valley (Central Italian Alps). Arct Antarct Alp Res 38(3):357–362. doi:10.1657/1523-0430(2006)38[357:EASAAY]2.0.CO;2

    Article  Google Scholar 

  • Gobbi M, Fontaneto D, De Bernardi F (2006b) Influence of climate changes on animal communities in space and time: the case of spider assemblages along an alpine glacier foreland. Global Change Biol 12(10):1985–1992. doi:10.1111/j.1365-2486.2006.01236.x

    Article  Google Scholar 

  • Gobbi M, Rossaro B, Vater A, De Bernardi F, Pelfini M, Brandmayr P (2007) Environmental features influencing Carabid beetle (Coleoptera) assemblages along a recently deglaciated area in the Alpine region. Ecol Entomol 32(6):682–689. doi:10.1111/j.1365-2311.2007.00912.x

    Article  Google Scholar 

  • Gobbi M, Caccaniga M, Cerabolini B, De Bernardi F, Luzarro A, Pierce S (2010) Plant adaptive responses during primary succession are associated with functional adaptations in ground beetles on deglaciated terrain. Community Ecol 11(2):223–231. doi:10.1556/ComEc.11.2010.2.11

    Article  Google Scholar 

  • Gobbi M, Isaia M, De Bernardi F (2011) Arthropod colonisation of a debris-covered glacier. Holocene 21(2):343–349. doi:10.1177/0959683610374885

    Article  Google Scholar 

  • Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glacier as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160. doi:10.3189/172756407782871512

    Article  Google Scholar 

  • Hågvar S (2010) Primary succession of springtails (Collembola) in a Norwegian glacier foreland. Arct Antarct Alp Res 42(4):422–429. doi:10.1657/1938-4246-42.4.422

    Article  Google Scholar 

  • Hill T, Lewicki P (2006) Statistics. Methods and applications. A comprehensive reference of science, industry and data mining. StatSoft Inc, Tulsa

    Google Scholar 

  • Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular references to mountain ecosystems. Environ Manage 35(5):649–666. doi:10.1007/s00267-004-0211-x

    Article  PubMed  Google Scholar 

  • Hodkinson ID, Coulson SJ, Harrison JA, Webb NR (2001) What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic–some counter intuitive ideas on community assembly. Oikos 95(2):349–352

    Article  Google Scholar 

  • Hodkinson ID, Webb NR, Coulson SJ (2002) Primary community assembly on land—the missing stages: why are the heterotrophic organisms always there first? J Ecol 90:569–577. doi:10.1046/j.1365-2745.2002.00696.x

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2004) Invertebrate community assembly along proglacial chronosequences in the high Arctic. J Anim Ecol 73:556–568. doi:10.1111/j.0021-8790.2004.00829.x

    Article  Google Scholar 

  • Hurka K (1996) Carabidae of the Czech and Slovak Republics. Kabourek, Zlín

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Janetschek H (1949) Tierische Succession auf hochalpinen Neuland. Berichte des naturw.-mediz. Vereins in Innsbruck 48(49):1–215

    Google Scholar 

  • Janetschek H (1958) Über die tierische Wiederbesiedlung im Hornkees-Vorfeld (Zillertaler Alpen). De Natura Tirolensi, Schlern-Schriften 188:209–246

    Google Scholar 

  • Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:419–431. doi:10.1111/j.1461-0248.2008.01173.x

    Article  PubMed  Google Scholar 

  • Kaufmann R (2001) Invertebrate succession on an Alpine glacier foreland. Ecology 82(8):2261–2278. doi:10.1890/0012-9658(2001)082[2261:ISOAAG]2.0.CO;2

    Article  Google Scholar 

  • Kaufmann R (2002) Glacier foreland colonisation: distinguishing between short-term and long-term effects of climate change. Oecologia 130:470–475. doi:10.1007/s00442-001-0815-2

    Article  Google Scholar 

  • Kaufmann R (2004) Monitoring invertebrates. In: Lee C, Schaaf T (eds) Global environmental and social monitoring. Proceedings of the 1st international thematic workshop held in Vienna (Austria) 9–11 May 2004, pp 68–77

  • Kaufmann R, Raffl C (2002) Diversity in primary succession: the chronosequence of a glacier foreland. In: Körner C, Spehn E (eds) Global mountains biodiversity. A global Assessment, Parthenon, London, pp 177–190

  • Killias E (1894) Verzeichnisse der Insectenfauna Graubündens. IV: Coleopteren. Jahresbericht der naturforschenden Gesellschaft Graubündens

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge and New York (3rd printing)

    Google Scholar 

  • Leyer I, Wesche K (2006) Multivariate Statistik in der Ökologie. Springer, Berlin

    Google Scholar 

  • Lindroth CH (1974) Handbook for the identification of British insects, vol IV. Coleoptera, Part 2, Carabidae. Royal Entomological Society of London, London

  • Lindroth CH (1986) The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Ent Scand 15(2):233–497

    Google Scholar 

  • Luka H, Marggi W, Huber C, Gonseth Y, Nagel P (2009) Coleoptera, Carabidae. Ecology-Atlas. Fauna Helvetica 24. Centre suisse de cartographie de la faune und Schweizerische Entomologische Gesellschaft, Neuchâtel

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Malden

    Google Scholar 

  • Mani MS (1968) Ecology and biogeography of high altitude insects. Junk Publishers, The Hague

    Google Scholar 

  • Marggi W (1992) Faunistik der Sandlaufkäfer und Laufkäfer der Schweiz (Cicindelidae & Carabidae) unter besonderer Berücksichtigung der ‚Roten Liste‘. Coleoptera Teil 1/Text.—Documenta Faunistica Helvetiae 13. Centre suisse de cartographie de la faune, Neuchâtel

    Google Scholar 

  • Matthews JA (1992) The ecology of recently-deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Matthews JA (1999) Disturbance regimes and ecosystem response on recently-deglaciated substrates. In: Walker LR (ed) Ecosystems on disturbed ground. Elsevier, Amsterdam, pp 17–37

    Google Scholar 

  • Mavris C, Egli M, Plötze M, Blum JD, Mirabella A, Giaccai D, Haeberli W (2010) Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma 155:359–371. doi:10.1016/j.geoderma.2009.12.019

    Article  CAS  Google Scholar 

  • Menéndez R (2007) How are insects responding to global warming? Tijdschrift voor Entomologie 150:355–365

    Google Scholar 

  • Mills LS (2007) Conservation of wildlife populations: Demography, genetics, and management. Blackwell, Malden

    Google Scholar 

  • Milner AM, Brittain JE, Castella E, Petts GE (2002) Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshwater Biol 46(12):1833–1847. doi: 10.1046/j.1365-2427.2001.00861.x

    Google Scholar 

  • Mrzljak J, Wiegleb G (2000) Spider colonization of former brown coal mining areas—time or structure dependent? Landscape Urban Plan 51:131–146. doi:10.1016/S0169-2046(00)00104-3

    Article  Google Scholar 

  • Müller-Motzfeld G (ed) (2006) Adephaga 1: Carabidae (Laufkäfer). In: Freude H, Harde KW, Lohse GA, Klausnitzer B (eds) Die Käfer Mitteleuropas. Spektrum, Heidelberg/Berlin, 2. Auflage

  • New TR (2010) Beetles in conservation. Blackwell, Chicester

    Book  Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677. doi:10.1126/science.1107046

    Article  PubMed  CAS  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119(2):239–246. doi:10.1007/s004420050782

    Article  Google Scholar 

  • Økland RH (1999) On the variation explained by ordination and constrained ordination axes. J Veg Sci 10:131–136

    Article  Google Scholar 

  • Østbye E, Hågvar S (1996) Pit-fall catches of surface-active arthropods in high mountain habitats at Finse, South Norway. IV. Coleoptera. Fauna Norv Ser B 43:1–18

    Google Scholar 

  • Ottesen PS (1996) Niche segregation of terrestrial alpine beetles (Coleoptera) in relation to environmental gradients and phenology. J Biogeogr 23:353–369

    Article  Google Scholar 

  • Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402. doi:10.1029/2004GL020816

    Article  Google Scholar 

  • Paulus U, Paulus HF (1997) Die Zönologie von Spinnen auf dem Gletschervorfeld des Hornkees in den Zillertaler Alpen in Tirol (Österreich) (Arachnida, Araneae). Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck 80:227–267

    Google Scholar 

  • Raffl C, Mallaun M, Mayer R, Erschbamer B (2006) Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct Antarct Alp Res 38(3):421–428. doi:10.1657/1523-0430(2006)38[421:VSPADC]2.0.CO;2

    Article  Google Scholar 

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506. doi:10.1023/A:1022412617568

    Article  Google Scholar 

  • Robinson CT, Uehlinger U, Hieber M (2001) Spatio-temporal variation in macroinvertebrate assemblages of glacial streams in the Swiss Alps. Freshw Biol 46(12):1663–1672. doi:10.1046/j.1365-2427.2001.00851.x

    Article  CAS  Google Scholar 

  • Samways MJ, McGeoch MA, New TR (2010) Insect conservation. A handbook of approaches and methods. Oxford University Press, Oxford

    Google Scholar 

  • Scherrer D, Körner C (2010) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38(2):406–416. doi:10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  • Seniczak A, Solhøy T, Seniczak S (2006) Oribatid mites (Acari: Oribatida) in the glacier foreland at Hardangerjøkulen (Norway). Biol Lett 43:231–235

    Google Scholar 

  • Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44(4):306–316. doi:10.1007/s00248-002-2025-9

    Article  PubMed  CAS  Google Scholar 

  • Southwood TRE (1978) Ecological methods with particular reference to the study of insect populations. Chapman and Hall, London

    Google Scholar 

  • StatSoft, Inc. (2010) STATISTICA for Windows (data analysis software system), version 9.1. www.statsoft.com

  • Ter Braak CJF, Šmilauer P (2002) CANOCO for windows, version 4.5. Biometrics, Wageningen

    Google Scholar 

  • Thiele HU (1977) Carabid beetles in their environment. A study on habitat selection by adaptation in physiology and behaviour. Springer, New York

    Google Scholar 

  • Tscherko D, Hammesfahr U, Zeltner G, Kandeler E, Böcker R (2005) Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl Ecol 6(4):367–383. doi:10.1016/j.baae.2005.02.004

    Article  CAS  Google Scholar 

  • Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98(4):725–736. doi:10.1111/j.1365-745.2010.01664.x

    Google Scholar 

  • Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. Plos Biol 6(12):e325. doi:10.1371/journal.pbio.0060325

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biol 13(9):1873–1887. doi:10.1111/j.1365-2486.2007.01418.x

    Article  Google Scholar 

  • Wood DM, Del Moral R (1987) Mechanisms of early primary succession in subalpine habitats on Mount St. Helens. Ecology 68(4):780–790

    Google Scholar 

  • Zemp M, Paul F, Hoelzle M, Haeberli W (2007) Glacier fluctuations in the European Alps 1850–2000: an overview and spatio-temporal analysis of available data. In: Orlove B, Wiegandt E, Luckman BH (eds) Darkening peaks—glacial retreat, science and society. University of California Press, Berkeley, pp 152–167

  • Ziefle M (2006) Gletscherschwund und Vegetationsdynamik in Morteratsch (Pontresina, Schweiz). Unpublished diploma thesis. Department of Geography University of Zurich

Download references

Acknowledgments

We are grateful to everyone who helped with this research project. A. Kunz carried out field work in 2007. M. Bertschinger was responsible for fieldwork in 2009. The carabid specialist Dr. W. Marggi verified some uncertain determinations of the genus Bembidion, and Dr. F. Hieke some specimens of the genus Amara. M. Lussi Bell and N. Bell kindly helped with proofreading. R. Rupf, M. Wernli, M. Wyttenbach and R. Rechsteiner made valuable comments on the manuscript. Thanks are also due to two anonymous reviewers who contributed substantial input. The study was generously supported by grants from the following private foundations: G. und B. Schwyzer-Winiker-Stiftung, M. und R. Gsell-Stiftung, K. Mayer-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Schlegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel, J., Riesen, M. Environmental gradients and succession patterns of carabid beetles (Coleoptera: Carabidae) in an Alpine glacier retreat zone. J Insect Conserv 16, 657–675 (2012). https://doi.org/10.1007/s10841-011-9448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9448-x

Keywords

Navigation