Skip to main content

Advertisement

Log in

Edge effects of three anthropogenic disturbances on spider communities in Alberta’s boreal forest

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Increasing fragmentation of forests worldwide by timber and industrial development makes it important to understand the edge effects of common anthropogenic disturbances on forest fauna. We collected ground-active spiders along transects across the edge of logging clearcuts, gravel roads and gas pipelines in the boreal forest of Alberta, sampling on the disturbance (10 m from forest edge), and 10, 45, and 200 m into the forest. We asked whether the three disturbances were associated with edge effects on spider communities, and whether the extent of their associated edge effects were equivalent. The spider community at the edges of clearcuts was distinct from interior and on-disturbance communities 10 m into the forest from the clearcut edge, showing an edge effect of between 10 and 45 m from clearcut edges, while no edge effects were apparent at road and pipeline edges. Edge effects therefore differ at linear and non-linear openings in the boreal forest, which suggests that small linear openings may be associated with minimal edge effects compared to large polygonal forest openings. This result has important consequences for forest management, where clearcuts and other non-linear openings are likely to cause edge effects on spider communities that are between 10 and 45 m in their extent. The small size of clearcuts as practiced in the public forests of Canada, and their dense and broad application across the landscape, makes this edge effect of broad spatial significance in protecting biodiversity in managed landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46

    Google Scholar 

  • Buddle CM, Draney ML (2004) Phenology of linyphiids in an old-growth deciduous forest in central Alberta, Canada. J Arachnol 32(2):221–230

    Article  Google Scholar 

  • Buddle CM, Shorthouse DP (2008) Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests. Can Entomol 140(4):437–452

    Article  Google Scholar 

  • Buddle CM, Spence JR, Langor DW (2000) Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23(4):424–436

    Article  Google Scholar 

  • Chen JQ, Franklin JF, Spies TA (1992) Vegetation responses to edge environments in old-growth Douglas-fir forests. Ecol Appl 2(4):387–396

    Article  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl 5(1):74–86

    Article  Google Scholar 

  • Chen JQ, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49(4):288–297

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial, 6th edn. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Clarke RD, Grant PR (1968) An experimental study of the role of spiders as predators in a forest litter community. Part 1. Ecology 49(6):1152–1154

    Article  Google Scholar 

  • Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31(1):17–30

    Google Scholar 

  • Dondale CD, Redner JH (1978) The crab spiders of Canada and Alaska (Araneae: Philodromidae and Thomisidae), vol 5. The insects and arachnids of Canada. Agriculture Canada, Ottawa

    Google Scholar 

  • Dondale CD, Redner JH (1982) The sac spiders of Canada and Alaska (Araneae: Clubionidae and Anyphaenidae), vol 9. The insects and arachnids of Canada, vol 9. Agriculture Canada, Ottawa

    Google Scholar 

  • Dondale CD, Redner JH (1990) The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska (Araneae: Lycosidae, Pisauridae, and Oxyopidae), vol 17. The insects and arachnids of Canada. Agriculture Canada, Ottawa

    Google Scholar 

  • Dondale CD, Redner JH (2003) The orb-weaving spiders of Canada and Alaska (Araneae: Uloboridae, Tetragnathidae, Araneidae, Theridiosomatidae), vol 23. The insects and arachnids of canada, vol 23. NRC Research Press, Ottawa

    Google Scholar 

  • Duelli P, Obrist MK, Fluckiger PF (2002) Forest edges are biodiversity hotspots: also for neuroptera. Acta Zool Acad Sci Hung 48:75–87

    Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Ewers RM, Didham RK (2008) Pervasive impact of large-scale edge effects on a beetle community. PNAS 105(14):5426–5429. doi:10.1073/pnas.0800460105

    Article  PubMed  CAS  Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Galle R, Torma A (2009) Epigeic spider (Araneae) assemblages of natural forest edges in the Kiskunsag (Hungary). Community Ecol 10(2):146–151. doi:10.1556/ComEc.10.2009.2.2

    Article  Google Scholar 

  • Gates JE, Gysel LW (1978) Avian nest dispersion and fledging success in field-forest ecotones. Ecology 59(5):871–883

    Article  Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. PNAS 107:8650–8655

    Article  PubMed  CAS  Google Scholar 

  • Harper KA, Macdonald SE (2002) Structure and composition of edges next to regenerating clear-cuts in mixed-wood boreal forest. J Veg Sci 13(4):535–546

    Article  Google Scholar 

  • Harper KA, Lesieur D, Bergeron Y, Drapeau P (2004) Forest structure and composition at young fire and cut edges in black spruce boreal forest. Can J For Res/Rev Can Rech For 34(2):289–302. doi:10.1139/x03-279

    Article  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):768–782

    Article  Google Scholar 

  • Harrison S, Bruna E (1999) Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography 22(3):225–232

    Article  Google Scholar 

  • Haskell DG (2000) Effects of forest roads on macroinvertebrate soil fauna of the southern Appalachian mountains. Conserv Biol 14(1):57–63

    Article  Google Scholar 

  • Heliola J, Koivula M, Niemela J (2001) Distribution of carabid beetles (Coleoptera, Carabidae) across a boreal forest-clearcut ecotone. Conserv Biol 15(2):370–377

    Article  Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75(4):800–802

    Article  Google Scholar 

  • Jansson C, von Bromssen A (1981) Decline of spiders and insects in Spruce (Picea abies) and its relation to predation by birds. Holarctic Ecol 4(2):82–93

    Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139(1):1–10. doi:10.1007/s00442-004-1497-3

    Article  PubMed  Google Scholar 

  • Larrivee M, Drapeau P, Fahrig L (2008) Edge effects created by wildfire and clear-cutting on boreal forest ground-dwelling spiders. For Ecol Manag 255(5–6):1434–1445

    Article  Google Scholar 

  • Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33(4):399–408. doi:10.1111/j.1442-9993.2008.01895.x

    Article  Google Scholar 

  • Laurance WF, Laurance SG, Ferreira LV, RankindeMerona JM, Gascon C, Lovejoy TE (1997) Biomass collapse in Amazonian forest fragments. Science 278(5340):1117–1118

    Article  CAS  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16(3):605–618

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM, Harms KE, Luizao RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2(10):1017

    Article  Google Scholar 

  • Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24(12):659–669. doi:10.1016/j.tree.2009.06.009

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology, Second English edn. Elsevier, Amsterdam

    Google Scholar 

  • Leong JM, Thorp RW (1999) Colour-coded sampling: the pan trap colour preferences of oligolectic and nonoligolectic bees associated with a vernal pool plant. Ecol Entomol 24(3):329–335

    Article  Google Scholar 

  • Leopold A (1933) Game management. Charles Scribner’s Sons, New York

    Google Scholar 

  • Lopez LEM, Harper KA, Drapeau P (2006) Edge influence on forest structure in large forest remnants, cutblock separators, and riparian buffers in managed black spruce forests. Ecoscience 13(2):226–233

    Article  Google Scholar 

  • Magura T, Tothmeresz B, Molnar T (2001) Forest edge and diversity: carabids along forest-grassland transects. Biodivers Conserv 10(2):287–300

    Article  Google Scholar 

  • Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66(3):185–194

    Article  Google Scholar 

  • Matlack GR (1994) Vegetation dynamics of the forest edge: trends in space and successional time. J Ecol 82(1):113–123

    Article  Google Scholar 

  • McCune B, Grace J (2002) Analysis of ecological communities. MJM Software Design, Gleneden Beach

    Google Scholar 

  • McRae DJ, Duchesne LC, Freedman B, Lynham TJ, Woodley S (2001) Comparisons between wildfire and forest harvesting and their implications in forest management. Environ Rev 9:223–260

    Article  CAS  Google Scholar 

  • Mullen K, Fahy O, Gormally M (2003) Ground flora and associated arthropod communities of forest road edges in Connemara, Ireland. Biodivers Conserv 12(1):87–101

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62

    Article  PubMed  CAS  Google Scholar 

  • Niemela J, Pajunen T, Haila Y, Punttila P, Halme E (1994) Seasonal activity of boreal forest-floor spiders (Araneae). J Arachnol 22(1):23–31

    Google Scholar 

  • Niemela J, Koivula M, Kotze DJ (2007) The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J Insect Conserv 11(1):5–18. doi:10.1007/s10841-006-9014-0

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Package vegan R: community ecology package. http://www.cran.r-project.org/

  • Olszewski TD (2004) A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104(2):377–387. doi:10.1111/j.0030-1299.2004.12519.x

    Article  Google Scholar 

  • Pajunen T, Haila Y, Halme E, Niemela J, Punttila P (1995) Ground-dwelling spiders (Arachnida: Araneae) in fragmented old forests and surrounding managed forests in southern Finland. Ecography 18(1):62–72. doi:10.1111/j.1600-0587.1995.tb00119.x

    Article  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic 6(4):780–793

    Article  Google Scholar 

  • Pearce JL, Venier LA, Eccles G, Pedlar J, McKenney D (2005) Habitat islands, forest edge and spring-active invertebrate assemblages. Biodivers Conserv 14(12):2949–2969

    Article  Google Scholar 

  • Perera AH, Baldwin DJB (2000) Spatial patterns in the managed forest landscape of Ontario. In: AH P, DL E, ID T (eds) Ecology of a managed terrestrial landscape: patterns and processes in forest landscapes of Ontario. University of British Columbia Press, Vancouver, pp 74–99

    Google Scholar 

  • Platnick NI (2010) The World Spider Catalogue, Version 10.5. The American Museum of Natural History, Washington DC

    Google Scholar 

  • Platnick N, Dondale CD (1992) The ground spiders of Canada and Alaska (Araneae: Gnaphosidae), vol 19. The insects and arachnids of Canada. Agriculture Canada, Ottawa

    Google Scholar 

  • Pohlman CL, Turton SM, Goosem M (2007) Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica 39(1):62–71

    Article  Google Scholar 

  • R Development Core Team (2008) R v.2.8.1: a language and environment for statistical computing. 2.8.1 edn. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ries L, Sisk TD (2008) Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156(1):75–86

    Article  PubMed  Google Scholar 

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Ann Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Roberts D (2007) Package labdsv R: ordination and multivariate analysis for ecology. http://www.cran.r-project.org/

  • Robinson JV (1981) The effect of architectural variation in habitat on a spider community: an experimental field study. Ecology 62(1):73–80

    Article  Google Scholar 

  • SAS Institute (2009) JMP 8.0.2. Cary, NC

  • Schneider RR (2002) Alternative futures: Alberta’s boreal forest at the crossroads. Alberta Centre for Boreal Research, Edmonton AB

    Google Scholar 

  • Spence JR, Langor DW, Jacobs JM, Work TT, Volney WJA (2008) Conservation of forest-dwelling arthropod species: simultaneous management of many small and heterogeneous risks. Can Entomol 140(4):510–525

    Article  Google Scholar 

  • Taboada A, Kotze DJ, Salgado JM (2004) Carabid beetle occurrence at the edges of oak and beech forests in NW Spain. Eur J Entomol 101(4):555–563

    Google Scholar 

  • Tera Environmental Consultants (2003) Environmental protection plan. Shell Canada Limited Moose Mountain Interconnect Pipeline Project, Calgary

    Google Scholar 

  • Turnbull AL (1973) Ecology of true spiders (Araneomorphae). Annu Rev Entomol 18:305–348

    Article  Google Scholar 

  • Tylianakis JM, Klein AM, Tscharntke T (2005) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 86(12):3296–3302

    Article  Google Scholar 

  • Uetz GW (1991) Habitat structure and spider foraging. In: McCoy ED, Bell SA, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman & Hall, pp 325–348

  • Vlijm L, Kessler-Geschiere A (1967) Phenology and habitat of Pardosa monticola, P. Nigriceps and P. Pullata (Araneae: Lycosidae). J Anim Ecol 36(1):31–56

    Article  Google Scholar 

  • Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280(5372):2126–2128

    Article  PubMed  CAS  Google Scholar 

  • Work TT, Buddle CM, Korinus LM, Spence JR (2002) Pitfall trap size and capture of three taxa of litter-dwelling arthropods: Implications for biodiversity studies. Environ Entomol 31(3):438–448

    Article  Google Scholar 

  • Yu XD, Luo TH, Zhou HZ (2010) Distribution of ground-dwelling beetle assemblages (Coleoptera) across ecotones between natural oak forests and mature pine plantations in north China. J Insect Conserv 14(6):617–626

    Article  Google Scholar 

  • Ziesche TM, Roth M (2008) Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: what makes the difference, tree species or microhabitat? For Ecol Manag 255(3–4):738–752

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to those who assisted with the identification of spider specimens (Jaime Pinzon, Dr. Rob Bennett, Joey Slowik and Dr. Wayne Maddison), fieldwork and arthropod sorting (Dayna Chetek, Stu Crawford, Amy Darling, Portia Lloyd, Sierra Love, Natasha Myers, April Matisz, Chelsea Matisz, and Gennifer Meldrum). We also thank Dr. John Swann for collections support; Canbra Foods of Lethbridge for materials donations; and the University of Calgary Faculty of Graduate Studies, Shell Canada Limited, Husky Oil, Alberta Ingenuity, and NSERC Discovery Grants for funding support. Shell Canada Limited and Husky Oil funded the bulk of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Kowal.

Appendix

Appendix

See Table 6.

Table 6 Spider species list, sorted alphabetically by family

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowal, V.A., Cartar, R.V. Edge effects of three anthropogenic disturbances on spider communities in Alberta’s boreal forest. J Insect Conserv 16, 613–627 (2012). https://doi.org/10.1007/s10841-011-9446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9446-z

Keywords

Navigation