Skip to main content
Log in

Patch shape alters spider community structure: links between microhabitat choice and sensitivity to increased edge habitat

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Increased edge effects in fragmented habitats can affect the abundance of edge-dwelling organisms, but these impacts may depend on the biological attributes of species. Microhabitat choice, a species characteristic that reflects combinations of biological traits, may affect the ability of peripheral species to take advantage of increased edge habitat in the presence of edge effects. In this field study, we built artificial shrub modules designed to encourage web spiders to build webs on the periphery. While modules were identical in volume, they differed in shape (cubic and elongated), so that elongated modules had more edge habitat and were subject to enhanced edge effects. Given that the tangle-web spiders Theridion and Dictyna built webs on module edges and strongly differed in terms of concealment and substrate generalization, two habitat characteristics associated with lower vulnerability to habitat modification, we tested the hypothesis that Theridion, which built webs in more concealed locations and on a greater diversity of substrate configurations in the modules compared to Dictyna, would take better advantage of increased edge habitat. As predicted, Theridion was significantly more abundant on elongated modules whereas the abundance of Dictyna did not respond to shape, even though the change in module shape entailed a similar increase in favored substrate for both spider groups. Our results suggest that the microhabitat associations of organisms may be linked to their propensity to be sensitive to edges, and that a better understanding of these links can improve our ability to predict the effects of habitat modification on biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson L, Burgin S (2008) Patterns of bird predation on reptiles in small woodland remnant edges in peri-urban north-western Sydney, Australia. Landsc Ecol 23:1039–1047. doi:10.1007/s10980-008-9252-5

    Article  Google Scholar 

  • Andren H, Angelstam P (1988) Elevated predation rates as an edge effect in habitat islands: experimental evidence. Ecology 69:544–547

    Article  Google Scholar 

  • Atlegrim O (1989) Exclusion of birds from bilberry stands: impact on insect larval density and damage to the bilberry. Oecologia 79:136–139. doi:10.1007/BF00378251

    Article  Google Scholar 

  • Benjamin SP, Zschokke S (2002) Untangling the tangle-web: web construction behavior of the comb-footed spider Steatoda triangulosa and comments on phylogenetic implications (Araneae: Theridiidae). J Insect Behav 15:791–801. doi:10.1023/A:1021175507377

    Article  Google Scholar 

  • Blackledge TA, Coddington JA, Gillespie RG (2003) Are three-dimensional spider webs defensive adaptations? Ecol Lett 6:13–18. doi:10.1046/j.1461-0248.2003.00384.x

    Article  Google Scholar 

  • Brand LA (2004) Prediction and assessment of edge response and abundance for desert riparian birds in southeastern Arizona. PhD thesis. Colorado State University, Fort Collins, USA

  • Buchholz S (2010) Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodivers Conserv 19:2565–2595

    Article  Google Scholar 

  • Burkey TV (1993) Edge effects in seed and egg predation at two neotropical rainforest sites. Biol Conserv 66:139–143. doi:10.1016/0006-3207(93)90145-Q

    Article  Google Scholar 

  • Caley MJ, St John J (1996) Refuge availability structures assemblages of coral reef fishes. J Anim Ecol 65:414–428

    Article  Google Scholar 

  • Chamberlin RV, Gertsch WJ (1958) The spider family Dictynidae in America north of Mexico. B Am Mus Nat Hist 116:1–152

    Google Scholar 

  • Chew RM (1961) Ecology of the spiders of a desert community. J NY Entomol Soc 69:5–41

    Google Scholar 

  • Cloudsley-Thompson JL (1962) Microclimates and the distribution of terrestrial arthropods. Annu Rev Entomol 7:199–222

    Article  Google Scholar 

  • Cutler B, Jennings DT, Moody MJ (1977) Biology and habitats of the lynx spider Oxyopes scalaris Hentz (Araneae: Oxyopidae). Entomol News 88:87–97

    Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–271

    Article  Google Scholar 

  • Eggleston DB, Lipcius RN, Grover JJ (1997) Predator and shelter-size effects on coral reef fish and spiny lobster prey. Mar Ecol Prog Ser 149:43–59

    Article  Google Scholar 

  • Ehmann WJ (1994a) The organization of shrub-steppe spider assemblages: a hierarchical evaluation of deterministic and stochastic influences. PhD dissertation, Department of Biology, Utah State University, Logan, Utah, USA

  • Ehmann WJ (1994b) Spider habitat selection: an experimental field test of the role of substrate diameter. J Arachnol 22:77–81

    Google Scholar 

  • Ehmann WJ (1994c) Organization of spider assemblages on shrubs: an assessment of the role of dispersal mode in colonization. Am Midl Nat 131:301–310

    Article  Google Scholar 

  • Ehmann WJ, MacMahon JA (1996) Initial tests for priority effects among spiders that co-occur on sagebrush shrubs. J Arachnol 24:173–185

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2007) The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv Biol 21:926–936

    Article  PubMed  Google Scholar 

  • Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182

    Article  Google Scholar 

  • Ferguson SH (2000) Predator size and distance to edge: is bigger better? Can J Zool 78:713–720. doi:10.1139/cjz-78-5-713

    Article  Google Scholar 

  • Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, NY

    Google Scholar 

  • Gilpin ME, Diamond JM (1976) Calculation of immigration and extinction curves from the species-area-distance relation. PNAS 73:4130–4134

    Article  PubMed  CAS  Google Scholar 

  • Hackett HM, Pagels JF (2003) Nest site characteristics of the endangered northern flying squirrel (Glaucomys sabrinus coloratus) in Southwest Virginia. Am Midl Nat 150:321–331

    Article  Google Scholar 

  • Hatley CL, MacMahon JA (1980) Spider community organization: seasonal variation and the role of vegetation architecture. Environ Entomol 9:632–639

    Google Scholar 

  • Heikkinen MW, MacMahon JA (2004) Assemblages of spiders on models of semi-arid shrubs. J Arachnol 32:313–323

    Article  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules CR, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Herrmann JD, Bailey D, Hofer G, Herzog F, Schmidt-Entling MH (2010) Spiders associated with the meadow and tree canopies of orchards respond differently to habitat fragmentation. Landsc Ecol 25:1375–1384

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ (2002) Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83:2855–2868. doi:10.1890/0012-9658(2002)083[2855:CFSSCD]2.0.CO;2

    Article  Google Scholar 

  • Jackson RR (1977) Comparative studies of Dictyna and Mallos (Araneae, Dictynidae): III. Prey and predatory behavior. Psyche 84:267–280

    Article  Google Scholar 

  • Jackson RR, Pollard SD (1996) Predatory behavior of jumping spiders. Annu Rev Entomol 41:287–308. doi:10.1146/annurev.en.41.010196.001443

    Article  PubMed  CAS  Google Scholar 

  • Jenks-Jay N (1982) Chick shelters decrease avian predation in least tern colonies on Nantucket Island, Massachusetts. J Field Ornithol 53:58–60

    Google Scholar 

  • Johnston DW, Odum EP (1956) Breeding bird populations in relation to plant succession on the piedmont of Georgia. Ecology 37:50–62. doi:10.2307/1929668

    Article  Google Scholar 

  • Levi HW (1957) The spider genera Enoplognatha, Theridion, and Paidisca in America north of Mexico (Araneae, Theridiidae). B Am Mus Nat Hist 122:1–123

    Google Scholar 

  • Lomolino MV (1990) The target area hypothesis: the influence of island area on immigration rates of non-volant mammals. Oikos 57:297–300

    Article  Google Scholar 

  • Manicom C, Schwarzkopf L, Alford RA, Schoener TW (2008) Self-made shelters protect spiders from predation. PNAS 105:14903–14907. doi:10.1073/pnas.0807107105

    Article  PubMed  CAS  Google Scholar 

  • Marc P, Canard A (1997) Maintaining spider biodiversity in agrosystems as a tool in pest control. Agric Ecosyst Environ 62:229–235. doi:10.1016/S0167-8809(96)01133-4

    Article  Google Scholar 

  • Moksnes P-O, Pihl L, van Montfrans J (1998) Predation on postlarvae and juveniles of the shore crab Carcinus maenas: importance of shelter, size and cannibalism. Mar Ecol Prog Ser 166:211–225

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62. doi:10.1016/S0169-5347(00)88977-6

    Article  PubMed  CAS  Google Scholar 

  • Nyffeler M (1988) Prey records of the web-building spiders Dictyna segregata (Dictynidae), Theridion australe (Theridiidae), Tidarren haemorrhoidale (Theridiidae), and Frontinella pyramitela (Linyphiidae) in a cotton agroecosystem. Southwest Nat 33:215–218

    Article  Google Scholar 

  • Nyffeler M (1999) Prey selection of spiders in the field. J Arachnol 27:317–324

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RG, Simpson GL, Solymos P, Stevens MH, Wagner H (2010) Vegan: Community ecology package. R package version 1.17-1. http://CRAN.Rproject.org/package = vegan

  • Ostman O, Mellbrand K, Hamback PA (2009) Edge or dispersal effects-their relative importance on arthropod densities on small islands. Basic Appl Ecol 10:475–484. doi:10.1016/j.baae.2008.09.002

    Article  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic 6:780–793

    Article  Google Scholar 

  • Pearson DE (2009) Invasive plant architecture alters trophic interactions by changing predator abundance and behavior. Oecologia 159:549–558. doi:10.1007/s00442-008-1241-5

    Article  PubMed  Google Scholar 

  • Pekar S (2000) Webs, diet and fecundity of Theridion impressum (Araneae:Theridiidae). Eur J Entomol 97:47–50

    Google Scholar 

  • Prenter J, Pérez-Staples D, Taylor PW (2010) The effects of morphology and substrate diameter on climbing and locomotor performance in male spiders. Funct Ecol 24:400–408

    Google Scholar 

  • Purger JJ, Mészáros LA, Purger D (2004) Predation on artificial nests in post-mining recultivated area and forest edge: contrasting the use of plasticine and quail eggs. Ecol Eng 22:209–212

    Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614. doi:10.1111/j.1461-0248.2006.00911.x

    Article  PubMed  Google Scholar 

  • Ries L, Sisk TD (2010) What is an edge species? The implications of sensitivity to habitat edges. Oikos. doi:10.1111/j.1600-0706.2010.18414.x

  • Roberts JA, Taylor PW, Uetz GW (2007) Consequences of complex signaling: predator detection of multimodal cues. Behav Ecol 236-240. doi:10.1093/beheco/arl079

  • Robinson JV (1981) The effect of architectural variation in habitat on a spider community: an experimental field study. Ecology 62:73–80. doi:10.2307/1936670

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Ross LK (2008) Predation on Platycryptus undatus (DeGeer 1778) by Parasteatoda tepidariorum (C.L. Koch 1841) (Araneae: Salticidae Theridiidae). Peckhamia 72.1:1

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166

    Google Scholar 

  • Sisk TD, Battin J (2002) Habitat edges and avian ecology: geographic patterns and insights for western landscapes. Stud Avian Biol 25:30–48

    Google Scholar 

  • Stiles GJ, Coyle FA (2001) Habitat distribution and life history of species in the spider genera Theridion, Rugathodes, and Wamba in the Great Smoky Mountains National Park (Araneae, Theridiidae). J Arachnol 29:396–412. doi:10.1636/0161-8202(2001)029[0396:HDALHO]2.0.CO;2

    Article  Google Scholar 

  • Summerville KS (2004) Do smaller forest fragments contain a greater abundance of Lepidoptera crop and forage consumers? Environ Entomol 33:234–241

    Article  Google Scholar 

  • Ubick D, Paquin P, Cushing PE, Roth V (2005) Spiders of North America: an identification manual. American Arachnological Society, Keene (New Hampshire)

    Google Scholar 

  • Webb JK, Shine R (1997) A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol Conserv 82:203–217. doi:10.1016/S0006-3207(97)00032-3

    Article  Google Scholar 

  • Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45:421–427

    Article  Google Scholar 

  • Wing K (1984) The effects of altered prey availability and shrub architecture on spider community parameters: a field experiment in a shrub-steppe ecosystem. PhD dissertation, Utah State University, Logan, Utah, USA

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wise DH (2006) Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu Rev Entomol 51:441–465. doi:10.1146/annurev.ento.51.110104.150947

    Article  PubMed  CAS  Google Scholar 

  • Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302. doi:10.1007/BF00344966

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Utah State University Ecology Center, which also kindly gave us permission to do field work at the Green Canyon Field Station. We thank L. Spears and B. Kuethe for help with module construction, and J.A. MacMahon, S. Durham, S. K. M. Ernest, E. White, T. Evans, J. Bissonnette and E.W. Schupp for helpful comments on the manuscript. We are also grateful to R. P. O’Donnell, P. R. Cobbold and G. M. Yenni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie M. Cobbold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobbold, S.M., Supp, S.R. Patch shape alters spider community structure: links between microhabitat choice and sensitivity to increased edge habitat. J Insect Conserv 16, 581–589 (2012). https://doi.org/10.1007/s10841-011-9443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9443-2

Keywords

Navigation