Skip to main content

Advertisement

Log in

Can ants be used as indicators of environmental impacts caused by arsenic?

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

We evaluated ants as bioindicators of environmental impacts caused by arsenic residuals in the soil. We tested the hypotheses that the presence of arsenic in the soil affects: (1) estimates of resources and habitat condition for arboreal and epigaeic ants; (2) species richness of arboreal and epigaeic ants and (3) arboreal and epigaeic ant species composition. Ants were sampled at an inactivated raticide factory in Nova Lima, Minas Gerais, Brasil, which used arsenic as one of its main byproducts. The following environmental variables were measured: bioavailable arsenic concentration in the soil, the number and density of tree species, plant cover and leaf litter depth. The species richness of arboreal ants decreased with increased bioavailable arsenic concentration whilst epigaeic ants increased with arsenic. Arboreal ants were positively related to the number of tree species, which in turn were negatively affected by arsenic. We verified which ants are good bioindicators of arsenic. Independent verification of the influence of arsenic on background environmental variables was fundamental in defining responses of ant communities, as well as in identifying the most effective pathways for the recovery of biological communities in degraded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agosti D, Majer J, Alonso LE, Schultz R (2000) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington

    Google Scholar 

  • Andersen AN, Majer JD (2004) Ants show the way down under: invertebrate as bioindicators in land management. Front Ecol Environ 2:291–298

    Article  Google Scholar 

  • Andersen AN, Fisher A, Hoffmann BD, Read JL, Richards R (2004) Use of terrestrial invertebrates for biodiversity monitoring in Australians rangelands, with particular reference to ants. Austral Ecol 29:87–92

    Article  Google Scholar 

  • Baird C (2002) Química ambiental. Bookman, Porto Alegre

    Google Scholar 

  • Bestelmeyer BT, Agosti D, Alonso LE, Brandão CRF, Brown WL, Delabie JHC, Silvestre R (2000) Field techniques for the study of ground dwelling ants—an overview, description, and evaluation. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants—standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 122–144

  • Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press, Harvard

    Google Scholar 

  • Bolton B (2003) Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, Florida

    Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96

    Google Scholar 

  • Coelho MS, Fernandes GW, Santos JC, Delabie JHC (2009) Ants (Hymenoptera: Formicidae) as bioindicators of land restoration in a Brazilian Atlantic Forest Fragment. Sociobiology 54:51–63

    Google Scholar 

  • Costa CB, Ribeiro SP, Castro PTA (2010) Ants as bioindicators of natural succession in Savanna and Riparian vegetation impacted by dredging in the Jequitinhonha River Basin, Brazil. Restor Ecol 18:148–157

    Google Scholar 

  • Crawley MJ (2002) Statistical computing: an introduction to data analysis using s-plus. John Wiley and Sons, Chichester

    Google Scholar 

  • Crawley MJ (2007) The R book. John Wiley and Sons, Chichester

    Book  Google Scholar 

  • Delabie JHC, Paim VRLM, Nascimento IC, Campiolo S, Mariano CSF (2006) As formigas como indicadores biológicos do impacto humano em Manguezais da costa sudeste da Bahia. Neotrop Entomol 35:602–615

    Article  PubMed  Google Scholar 

  • Eeva T, Sorvari J, Koivunen V (2004) Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ Pollut 132:533–539

    Article  PubMed  CAS  Google Scholar 

  • Felipe RTA, Oliveira JA, Leão GA (2009) Potencial de Cajanus cajan e Crotalaria spectabilis para fitorremediação: absorção de arsênio e respostas antioxidativas. Rev Árv 33:245–254

    Article  CAS  Google Scholar 

  • Felton A, Knight E, Wood J, Zammit C, Lindenmayer D (2010) A meta-analysis of fauna and flora species richness and abundance in plantations and pasture lands. Biol Conserv 143:545–554

    Article  Google Scholar 

  • Fernández F (2003) Introducción a las hormigas de la región Neotropical. Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt, Colombia

  • Foster AL (2003) Spectroscopic investigation of arsenic species in solid phases. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water: geochemistry and occurrence. Kluwer, Massachusetts, pp 27–65

    Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA): imaging sowftware to extract canopy structure and gap light transmission indices from truecolour fisheye photographs, user manual and program documentation. Simon Fraser University, Burnaby. British Colombia and The Institute of Ecosystem Studies, Millbrook, New York

    Google Scholar 

  • Gardner TA (2010) Monitoring forest biodiversity: improving conservation through ecologically-responsible management. Earthscan, London

    Google Scholar 

  • Gollan JR, Bruyn LL, Reid N, Smith D, Wilkie L (2011) Can ants be used as ecological indicators of restoration progress in dynamic environments? A case study in a revegetated riparian zone. Ecol Ind 11:1517–1525

    Google Scholar 

  • Goodsell PJ, Underwood AJ, Chapman MG (2009) Evidence necessary for taxa to be reliable indicators of environmental conditions or impacts. Mar Pollut Bull 58:323–331

    Article  PubMed  CAS  Google Scholar 

  • Graham JH, Krzysik AJ, Kovacic DA et al (2009) Species richness, equitability, and abundance of ants in disturbed landscapes. Ecol Ind 9:866–877

    Article  Google Scholar 

  • Grze`s IM (2009) Ant species richness and evenness increase along a metal pollution gradient in the Boleslaw zinc smelter area. Pedobiologia 53:65–73

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper AT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaentologia Electronica 4:9

    Google Scholar 

  • Hilty J, Merenlender A (2000) Faunal indicator taxa selection for monitoring ecosystem health. Biol Conserv 92:185–197

    Article  Google Scholar 

  • Hoffmann BD (2009) Using ants for rangeland monitoring: global patterns in the responses of ant communities to grazing. Ecol Indic 10:105–111

    Article  Google Scholar 

  • Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464

    Article  Google Scholar 

  • Hoffmann BD, Griffiths AD, Andersen AN (2000) Responses of ant communities to dry sulfur deposition from mining emissions in semi-arid tropical Australia, with implications for the use of function groups. Austral Ecol 25:653–663

    Article  Google Scholar 

  • Kuehnelt D, Goessler W, Schlagenhaufen C, Irgolic KJ (1997) Arsenic compounds in terrestrial organisms III: arsenic compounds in Formica sp. from an old arsenic smelter site. Appl Organomet Chem 11:859–867

    Article  CAS  Google Scholar 

  • Lach L, Parr CL, Abbott KL (2010) Ant ecology. Oxford University Press, Oxford

    Google Scholar 

  • Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164

    Article  Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R: a practical guide. Wiley-Blackwell, United Kingdom

    Book  Google Scholar 

  • Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between-and reconciliation of-‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671

    Article  Google Scholar 

  • Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401

    Google Scholar 

  • Majer JD, Brennan KEC, Moir ML (2007) Invertebrates and the restoration of a forest ecosystem: 30 years of research following bauxite mining in Western Australia. Restor Ecol 15:S104–S115

    Article  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant—a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Moriarty MM, Koch I, Gordon RA, Reimer KJ (2009) Arsenic speciation of terrestrial invertebrates. Environ Sci Technol 43:4818–4823

    Article  PubMed  CAS  Google Scholar 

  • Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annu Rev Ecol Syst 35:89–111

    Article  Google Scholar 

  • Nummelin M, Lodenius M, Tulisalo E, Hirvonen H, Alanko T (2006) Predatory insects as bioindicators of heavy metal pollution. Environ Pollut 145:339–347

    Article  PubMed  Google Scholar 

  • Ottonetti L, Tucci L, Santini G (2006) Recolonization patterns of ants in a rehabilitated lignite mine in central Italy: potential for the use of Mediterranean ants as indicators of restoration processes. Restor Ecol 14:60–66

    Article  Google Scholar 

  • Paillet Y, Bergès L, Hjältén J et al (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112

    Article  PubMed  Google Scholar 

  • Pereira MPS, Queiroz JM, Valcarcel R, Mayhé-Nunes AJ (2007) Fauna de formigas como ferramenta para monitoramento de área de mineração reabilitada na Ilha da Madeira, Itaguai, RJ. Cienc Florest 17:197–204

    Google Scholar 

  • Philpott SM, Perfecto I, Armbrecht I, Parr CL (2010) Ant diversity and fuction in disturbed and changing habitats. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford, Nwew York, pp 137–156

    Google Scholar 

  • Rabitsch WB (1997) Tissue-specific accumulation patterns of Pb, Cd, Cu, Zn, Fe, and Mn in workers of three ant species (Formicidae, Hymenoptera) from a metal-polluted site. Arch Environ Contam Toxicol 32:172–177

    Article  PubMed  CAS  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale process regulating arboreal ant species richness. Aust Ecol 28:305–314

    Article  Google Scholar 

  • Ribeiro-Filho MR, Siqueira JO, Curi N, Simão JBP (2001) Fracionamento e biodisponibilidade de metais pesados em solo contaminado, incubado com materiais orgânicos e inorgânicos. Rev Bras Cienc Solo 25:495–507

    CAS  Google Scholar 

  • Santana-Reis VPG, Santos GMM (2001) Influência da estrutura do habitat em comunidades de formigas (Hymenoptera–Formicidae) em Feira de Santana, Bahia, Brasil. Sitientibus Série Cienc Biol 1:66–70

    Google Scholar 

  • Schmidt FA, Diehl E (2008) What is the effect of soil use on ant communities? Neotrop Entomol 37:381–388

    Article  PubMed  Google Scholar 

  • Silva RR, Brandão CRF (1999) Formigas (Hymenoptera: Formicidae) como indicadores da calidad ambiental e da biodiversidad de otros invertebrados terrestres. Biotemas 12:55–73

    Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–165

    Article  CAS  Google Scholar 

  • Sorvari J, Rantala LM, Rantala MJ, Hakkarainen H, Eeva T (2006) Heavy metal pollution disturbs immune response in wild ant populations. Environ Pollut 145:324–328

    Article  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical computing, Vienna, Austria. http://www.r-project.org

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 13–25

  • Underwood EC, Fischer BL (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182

    Article  Google Scholar 

  • Vasconcelos HL (1999) Effects of forest disturbance on the structure of ground-foraging ant communities in central Amazonia. Biodiversity Conserv 8:409–420

    Article  Google Scholar 

  • Vasconcelos HL, Vilhena JMS, Caliri GJA (2000) Responses of ants to selective logging of a central Amazonian forest. J Appl Ecol 37:508–514

    Article  Google Scholar 

  • Vasconcelos HL, Leite MF, Vilhena JMS, Lima AP, Magnusson WE (2008) Ant diversity in an Amazonian savanna: relationship with vegetation structure, disturbance by fire, and dominant ants. Austral Ecol 33:221–231

    Article  Google Scholar 

  • Vasconcelos HL, Vilhena JMS, Facure KG, Albernaz ALKM (2010) Patterns of ant species diversity and turnover across 2000 km of Amazonian floodplain Forest. J Biogeogr 37:432–440

    Article  Google Scholar 

Download references

Acknowledgments

This study is resulted from the research project: CRA—270/07—“Utilização de formigas como bioindicadoras de impacto ambiental e de sua recuperação em Cerrado e em Mata Atlântica”. We are grateful to AngloGold Ashanti South America for allowing the collections, to Júlio N.C. Louzada for his assistance with some statistical analyses, to Toby A. Gardner for his valuable suggestions in the English expression and to anonymous referees for its critical reading. We are also grateful for Rodrigo M. Feitosa, who checked identification of ant species. The authors received grants and funding from FAPEMIG, CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla R. Ribas.

Appendix

Appendix

See Table 1.

Table 1 Frequency of occurrence of ant species captured in two microhabitats (epigaeic and arboreal) along twenty-seven sampling points at Nova Lima—MG

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribas, C.R., Solar, R.R.C., Campos, R.B.F. et al. Can ants be used as indicators of environmental impacts caused by arsenic?. J Insect Conserv 16, 413–421 (2012). https://doi.org/10.1007/s10841-011-9427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9427-2

Keywords

Navigation