Skip to main content

Advertisement

Log in

Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bach CE (1988) Effects of host plant patch size on herbivore density: patterns. Ecology 69:1090–1102

    Article  Google Scholar 

  • Bach M (1851) Entwickelungs-Geschichte von Cassida austriaca Hbr. Entomol Z 12:158–159

    Google Scholar 

  • Bacher S, Luder S (2005) Picky predators and the function of the faecal shield of a cassidine larva. Funct Ecol 19:263–272

    Article  Google Scholar 

  • Bayerisches Landesamt für Umweltschutz (2003) Rote Liste gefährdeter Tiere Bayerns. Schriftenreihe des Landesamts für Umweltschutz, vol 166. Bayerisches Landesamt für Umweltschutz, Augsburg, Germany

    Google Scholar 

  • Berggren Å, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569

    Article  Google Scholar 

  • Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths - the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259

    Article  Google Scholar 

  • Bourgeois J, Scherdlin P (1899) Catalogue des Coléoptères des Vosges et des regions limitrophes. Decker, Colmar

    Google Scholar 

  • Bundesamt für Naturschutz (1998) Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe für Landschaftspflege und Naturschutz, vol 55. Landwirtschaftsverlag, Münster, Germany

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Clarke RT, Thomas JA, Elmes GW, Hochberg ME (1997) The effects of spatial patterns in habitat quality on community dynamics within a site. Proc R Soc Lond B 264:347–354

    Article  Google Scholar 

  • Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734–748

    Google Scholar 

  • Cronin JT, Reeve JD (2005) Host–parasitoid spatial ecology: a plea for a landscape-level synthesis. Proc R Soc Lond B 272:2225–2235

    Article  Google Scholar 

  • Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Cons 1:167–176

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Article  Google Scholar 

  • Eber S (2001) Multitrophic interactions: the population dynamics of spatially structured plant-herbivore-parasitoid systems. Basic Appl Ecol 2:27–33

    Article  Google Scholar 

  • Elsner O (1994) Geplantes Naturschutzgebiet ‘Südlicher Haßbergetrauf’ im Landkreis Haßberge. Gutachten im Auftrag der Regierung von Unterfranken. Institut für Vegetationskunde und Landschaftsökologie, Hemhofen-Zeckern

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716

    Article  Google Scholar 

  • Goodwin BJ, Fahrig L (2002) How does landscape structure influence landscape connectivity? Oikos 99:552–570

    Article  Google Scholar 

  • Graser K (1984) Thüringer Funde von Cassida (U. G. Lordiconia RTTR) canaliculata LAICH. 1781 (Col., Chrysomelidae). Entomol Nachr Ber 28:86–87

    Google Scholar 

  • Gustafson EJ, Gardner RH (1996) The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77:94–107

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Ecology, genetics, and evolution of metapopulations. Elsevier, Amsterdam

    Google Scholar 

  • Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127

    Article  PubMed  Google Scholar 

  • Harrell FE Jr (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  • Harrell FE Jr (2005) Design: Design package. R package version 2.0-12. http://biostat.mc.vanderbilt.edu/s/Design

  • Harrell FE Jr, with contributions from many other users (2006) Hmisc: Harrell Miscellaneous. R package version 3.1-1. http://biostat.mc.vanderbilt.edu/s/Hmisc

  • Haynes KJ, Dillemuth FP, Anderson BJ, Hakes AS, Jackson HB, Jackson SE, Cronin JT (2007) Patch geography surpasses patch quality in its effects on herbivore dispersal and distribution. Oecologia 151:431–441

    Article  PubMed  Google Scholar 

  • Heikkinen RK, Luoto M, Kuussaari M, Pöyry J (2005) New insights into butterfly-environment relationships using partitioning methods. Proc R Soc Lond B 272:2203–2210

    Article  Google Scholar 

  • Hein S, Voss J, Poethke HJ, Schröder B (2007) Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets – simple or complex? J Insect Conserv 11:221–240

    Article  Google Scholar 

  • Heisswolf A, Obermaier E, Poethke HJ (2005) Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol Entomol 30:299–306

    Article  Google Scholar 

  • Heisswolf A, Poethke HJ, Obermaier E (2006) Multitrophic influences on egg distribution in a specialized leaf beetle at multiple spatial scales. Basic Appl Ecol 7:565–576

    Article  Google Scholar 

  • Hunter MD (2002) Landscape structure, habitat fragmentation, and the ecology of insects. Agric For Entomol 4:159–166

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Book  Google Scholar 

  • Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol [online] 1, 4. http://www.consecol.org/vol1/iss1/art4/

  • Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474

    Article  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:355–361

    Article  Google Scholar 

  • Kuhn W, Kleyer M (1999) A statistical habitat model for the blue winged grasshopper (Oedipoda caerulescens) considering the habitat connectivity. Z Ökol Nat.schutz 8:207–218

    Google Scholar 

  • Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between––and reconciliation of––‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671

    Article  Google Scholar 

  • Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401

    Article  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, London

    Google Scholar 

  • McGarigal K (2001) Fragstats: spatial pattern analysis program for quantifying landscape structure. Version 3.3. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515

    Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Nagelkerke NJD (1991) A note on the general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Reitter E (1912) Fauna Germanica, Käfer, Lutz, Stuttgart

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg DK, Noon BR, Meslow EC (1997) Biological corridors: form, function, and efficacy. BioScience 47:677–687

    Article  Google Scholar 

  • Rudner M, Biedermann R, Schröder B, Kleyer M (2007) Integrated grid based ecological and economic (INGRID) landscape model – a tool to support landscape management decisions. Environ Modell Softw 22:177–187

    Article  Google Scholar 

  • Schröder B (2006) ROC & AUC-Calculation – evaluating the predictive performance of habitat models. http://brandenburg.geoecology.uni-potsdam.de/users/schroeder/download.html

  • Steinhausen W (1949) Morphologie, Biologie und Ökologie der Entwicklungsstadien der in Niedersachsen heimischen Schildkäfer (Cassidinae Chrysomelidae Coleoptera) und deren Bedeutung für die Landwirtschaft. Dissertation, TU Braunschweig, Germany

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B 268:1791–1796

    Article  CAS  Google Scholar 

  • Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998) Population dynamics in the genus Maculinea. In: Dempster JP, McLean IFG (eds) Insect population dynamics: in theory and practice. Chapman and Hall, London, pp 261–290

    Google Scholar 

  • Trautner J, Geigenmüller K, Bense U (1989) Käfer beobachten, bestimmen. Neumann-Neudamm, Melsungen

    Google Scholar 

  • Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. Annu Rev Entomol 49:405–430

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239

    Article  Google Scholar 

  • van Nouhuys S, Hanski I (2002) Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 124–147

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Google Scholar 

  • Walsh C, Mac Nally R (2007) hier.part: hierarchical Partitioning. R package version 1.0-2. http://cran.r-project.org

  • Wencker J, Silbermann G (1866) Catalogue des Coléoptères de l’Alsace et des Vosgues. Silbermann, Strasbourg

  • Wiegand T, Moloney KA, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am Nat 154:605–627

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Robert Biedermann for providing the ‘Isolator’ software and to Thomas Hovestadt and Oliver Mitesser for statistical advice. Thomas O. Crist as well as an anonymous referee gave valuable comments on an earlier version of this manuscript. We thank the government of Lower Franconia (Bavaria, Germany) for the permission to work and to collect beetles in the nature reserve. This study used results from the MOSAIK-project which was financially supported by the German Federal Ministry of Education and Research (BMBF, grant 01LN 0007). A. Heisswolf was financially supported through a scholarship granted by the Evangelisches Studienwerk e.V. Villigst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Heisswolf.

Appendices

Appendix A

Total area and proportion of area covered by the nine main biotope types in the study area, the Hohe Wann nature reserve (Northern Bavaria, Germany; 50°03′ N, 10°35′ E). Classification according to Hein et al. (2007). Mapping by J. Eibich (unpublished data).

Biotope type

Area (ha)

Proportion cover (%)

Crop land

772.79

36.46

Fallow land

228.74

10.79

Intensively managed meadows

107.83

5.09

Intensively managed poor meadows

101.25

4.78

Dry grassland

55.59

2.62

Extensively managed meadows

129.80

6.12

Fringe vegetation

18.34

0.86

Hedges

103.93

4.90

Forest

487.43

22.99

Appendix B

Eigenvectors, eigenvalues, and explained variance of a principal components analysis including the predictor variables rosette diameter (cm), rosette height (cm), and number of vegetative cones.

 

PC 1

PC 2

PC 3

Rosette diameter (cm)

−0.918

0.058

−0.392

Rosette height (cm)

−0.861

0.357

0.364

Number of vegetative cones

−0.407

−0.906

0.114

Eigenvalues

1.748

0.953

0.299

% Variance explained

58.3

31.7

10.0

Appendix C

Eigenvectors, eigenvalues, and explained variance of a principal components analysis including the predictor variables potential solar irradiation (kWh/m2) and exposure (°).

 

PC 1

PC 2

Potential solar irradiation (kWh/m2)

0.985

−0.170

Exposure (°)

−0.985

−0.170

Eigenvalues

1.942

0.058

% Variance explained

97.1

2.89

Appendix D

Bivariate Spearman-rank correlations of all predictor variables and principal components (PC) used for explaining the occurrence and density of the herbivore C. canaliculata. The correlation coefficient ρ S is given (values >0.5 are shaded in gray).

figure a

Appendix E

Bivariate Spearman-rank correlations of all predictor variables and principal components (PC) used for explaining the occurrence and density of the parasitoid F. reptans. The correlation coefficient ρ S is given (values >0.5 are shaded in gray).

figure b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heisswolf, A., Reichmann, S., Poethke, H.J. et al. Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape. J Insect Conserv 13, 165–175 (2009). https://doi.org/10.1007/s10841-008-9139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-008-9139-4

Keywords

Navigation