Skip to main content

Advertisement

Log in

Innovations in atrial fibrillation ablation

  • Reviews
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Catheter-based ablation to perform pulmonary vein isolation (PVI) has established itself as a mainstay in the rhythm control strategy of atrial fibrillation. This review article aims to provide an overview of recent advances in atrial fibrillation ablation technology.

Methods

We reviewed the available literature and clinical trials of innovations in atrial fibrillation ablation technologies including ablation catheter designs, alternative energy sources, esophageal protection methods, electroanatomical mapping, and novel ablation targets.

Results

Innovative radiofrequency (RF) catheter designs maximize energy delivery while avoiding overheating associated with conventional catheters. Single-shot balloon catheters in the form of cryoballoons, radiofrequency, and laser balloons have proven effective at producing pulmonary vein isolation and improving procedural efficiency and reproducibility. Pulsed field ablation (PFA) is a highly anticipated novel nonthermal energy source under development, which demonstrates selective ablation of the myocardium, producing durable lesions while also minimizing collateral damage. Innovative devices for esophageal protection including esophageal deviation and cooling devices have been developed to reduce esophageal complications. Improved electroanatomical mapping systems are being developed to help identify additional non-pulmonary triggers, which may benefit from ablation, especially with persistent atrial fibrillation. Lastly, the vein of Marshall alcohol ablation has been recently studied as an adjunct therapy for improving outcomes with catheter ablation for persistent atrial fibrillation.

Conclusions

Numerous advances have been made in the field of atrial fibrillation ablation in the past decade. While further long-term data is still needed for these novel technologies, they show potential to improve procedural efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Innovations in ablation catheters
Fig. 2 Balloon-based ablation catheters
Fig. 3
Fig. 4 Esophageal deviation
Fig. 5

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

AEF:

Atrioesophageal fistula

CF:

Contact force

PFA:

Pulsed field ablation

PVI:

Pulmonary vein isolation

RCT:

Randomized controlled trial

RF:

Radiofrequency

RFA:

Radiofrequency ablation

References

  1. Steinbeck G, Sinner MF, Lutz M, et al. Incidence of complications related to catheter ablation of atrial fibrillation and atrial flutter: a nationwide in-hospital analysis of administrative data for Germany in 2014. Eur Heart J. 2018;39(45):4020–9. https://doi.org/10.1093/eurheartj/ehy452.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haïssaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66. https://doi.org/10.1056/nejm199809033391003.

    Article  PubMed  Google Scholar 

  3. Andrade JG, Champagne J, Dubuc M, et al. Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation. 2019;140(22):1779–88. https://doi.org/10.1161/circulationaha.119.042622.

    Article  PubMed  Google Scholar 

  4. Sørensen SK, Johannessen A, Worck R, Hansen ML, Hansen J. Radiofrequency versus cryoballoon catheter ablation for paroxysmal atrial fibrillation: durability of pulmonary vein isolation and effect on atrial fibrillation burden: the RACE-AF randomized controlled trial. Circ Arrhythm Electrophysiol. 2021;14(5):e009573. https://doi.org/10.1161/circep.120.009573.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kautzner J, Albenque JP, Natale A, et al. A novel temperature-controlled radiofrequency catheter ablation system used to treat patients with paroxysmal atrial fibrillation. JACC: Clin Electrophysiol. 2021;7(3):352–63. https://doi.org/10.1016/j.jacep.2020.11.009.

    Article  PubMed  Google Scholar 

  6. Reddy VY, Dukkipati SR, Neuzil P, et al. Randomized, controlled trial of the safety and effectiveness of a contact force–sensing irrigated catheter for ablation of paroxysmal atrial fibrillation. Circulation. 2015;132(10):907–15. https://doi.org/10.1161/CIRCULATIONAHA.114.014092.

    Article  PubMed  Google Scholar 

  7. Al-Hijji MA, Deshmukh AJ, Yao X, et al. Trends and predictors of repeat catheter ablation for atrial fibrillation. Am Heart J. 2016;171(1):48–55. https://doi.org/10.1016/j.ahj.2015.10.015.

    Article  PubMed  Google Scholar 

  8. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace. 2018;20(1):e1–160. https://doi.org/10.1093/europace/eux274.

    Article  PubMed  Google Scholar 

  9. Shurrab M, Di Biase L, Briceno DF et al. Impact of contact force technology on atrial fibrillation ablation: a meta‐analysis. J Am Heart Asso. 4(9):e002476. https://doi.org/10.1161/JAHA.115.002476.

  10. Gupta A, Perera T, Ganesan A, et al. Complications of catheter ablation of atrial fibrillation: a systematic review. Circ Arrhythm Electrophysiol. 2013;6(6):1082–8. https://doi.org/10.1161/circep.113.000768.

    Article  PubMed  Google Scholar 

  11. Ramirez FD, Reddy VY, Viswanathan R, Hocini M, Jaïs P. Emerging technologies for pulmonary vein isolation. Circ Res. 2020;127(1):170–83. https://doi.org/10.1161/circresaha.120.316402.

    Article  CAS  PubMed  Google Scholar 

  12. Iwasawa J, Koruth JS, Petru J, et al. Temperature-controlled radiofrequency ablation for pulmonary vein isolation in patients with atrial fibrillation. J Am Coll Cardiol. 2017;70(5):542–53. https://doi.org/10.1016/j.jacc.2017.06.008.

    Article  PubMed  Google Scholar 

  13. Verma A, Schmidt MM, Lalonde JP, Ramirez DA, Getman MK. Assessing the relationship of applied force and ablation duration on lesion size using a diamond tip catheter ablation system. Circ Arrhythm Electrophysiol. 2021;14(7): e009541. https://doi.org/10.1161/circep.120.009541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reddy VY, Grimaldi M, De Potter T, et al. Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST Trial. JACC Clin Electrophysiol. 2019;5(7):778–86. https://doi.org/10.1016/j.jacep.2019.04.009.

    Article  PubMed  Google Scholar 

  15. Baher A, Kheirkhahan M, Rechenmacher SJ, et al. High-power radiofrequency catheter ablation of atrial fibrillation: using late gadolinium enhancement magnetic resonance imaging as a novel index of esophageal injury. JACC Clin Electrophysiol. 2018;4(12):1583–94. https://doi.org/10.1016/j.jacep.2018.07.017.

    Article  PubMed  Google Scholar 

  16. Chen S, Chun KRJ, Tohoku S, et al. Esophageal endoscopy after catheter ablation of atrial fibrillation using ablation-index guided high-power: Frankfurt AI-HP ESO-I. JACC Clin Electrophysiol. 2020;6(10):1253–61. https://doi.org/10.1016/j.jacep.2020.05.022.

    Article  PubMed  Google Scholar 

  17. Verma MS, Terricabras M, Verma A. The cutting edge of atrial fibrillation ablation. arrhythmia & electrophysiology review. 2021;10(2):101–7. https://doi.org/10.15420/aer.2020.40.

  18. Leshem E, Zilberman I, Tschabrunn CM, et al. High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin Electrophysiol. 2018;4(4):467–79. https://doi.org/10.1016/j.jacep.2017.11.018.

    Article  PubMed  Google Scholar 

  19. Anter E, Neužil P, Rackauskas G et al. A lattice-tip temperature-controlled radiofrequency ablation catheter for wide thermal lesions. JACC: Clin Electrophysiol. 2020;6(5):507–19. https://doi.org/10.1016/j.jacep.2019.12.015.

  20. Reddy VY, Neužil P, Peichl P, et al. A lattice-tip temperature-controlled radiofrequency ablation catheter durability of pulmonary vein isolation and linear lesion block. JACC: Clin Electrophysiol. 2020;6(6):623–35.

    Article  PubMed  Google Scholar 

  21. Reddy VY, Anter E, Rackauskas G, et al. Lattice-tip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation: a first-in-human trial. Circ Arrhythm Electrophysiol. 2020;13(6):e008718. https://doi.org/10.1161/circep.120.008718

    Article  CAS  PubMed  Google Scholar 

  22. Hussein A, Das M, Riva S, et al. Use of ablation index-guided ablation results in high rates of durable pulmonary vein isolation and freedom from arrhythmia in persistent atrial fibrillation patients. circ: arrhythmia electrophysiol. 2018. https://doi.org/10.1161/CIRCEP.118.006576

    Article  Google Scholar 

  23. Duytschaever M, De Pooter J, Demolder A, et al. Long-term impact of catheter ablation on arrhythmia burden in low-risk patients with paroxysmal atrial fibrillation: the CLOSE to CURE study. Heart Rhythm. 2020;17(4):535–43. https://doi.org/10.1016/j.hrthm.2019.11.004

    Article  PubMed  Google Scholar 

  24. Taghji P, El Haddad M, Phlips T, et al. Evaluation of a strategy aiming to enclose the pulmonary veins with contiguous and optimized radiofrequency lesions in paroxysmal atrial fibrillation: a pilot study. JACC: Clin Electrophysiol. 2018;4(1):99–108.

    Article  PubMed  Google Scholar 

  25. Maurer T, Schlüter M, Kuck KH. Keeping it simple: balloon devices for atrial fibrillation ablation therapy. JACC Clin Electrophysiol. 2020;6(12):1577–96. https://doi.org/10.1016/j.jacep.2020.08.041.

    Article  PubMed  Google Scholar 

  26. Su W, Kowal R, Kowalski M, et al. Best practice guide for cryoballoon ablation in atrial fibrillation: the compilation experience of more than 3000 procedures. Heart Rhythm. 2015;12(7):1658–66. https://doi.org/10.1016/j.hrthm.2015.03.021.

    Article  PubMed  Google Scholar 

  27. Heeger CH, Tscholl V, Wissner E, et al. Acute efficacy, safety, and long-term clinical outcomes using the second-generation cryoballoon for pulmonary vein isolation in patients with a left common pulmonary vein: a multicenter study. Heart Rhythm. 2017;14(8):1111–8. https://doi.org/10.1016/j.hrthm.2017.05.003.

    Article  PubMed  Google Scholar 

  28. Osório TG, Coutiño HE, Brugada P, Chierchia GB, De Asmundis C. Recent advances in cryoballoon ablation for atrial fibrillation. Expert Rev Med Devices. 2019;16(9):799–808. https://doi.org/10.1080/17434440.2019.1653181.

    Article  CAS  PubMed  Google Scholar 

  29. Conti S, Moltrasio M, Fassini G, et al. Comparison between first- and second-generation cryoballoon for paroxysmal atrial fibrillation ablation. Cardiol Res Pract. 2016;2016:5106127. https://doi.org/10.1155/2016/5106127.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Davies A, Mahmoodi E, Emami M, et al. Comparison of outcomes using the first and second generation cryoballoon to treat atrial fibrillation. Heart Lung Circ. 2020;29(3):452–9. https://doi.org/10.1016/j.hlc.2019.03.017.

    Article  PubMed  Google Scholar 

  31. Aryana A, Kenigsberg DN, Kowalski M, et al. Verification of a novel atrial fibrillation cryoablation dosing algorithm guided by time-to-pulmonary vein isolation: results from the Cryo-DOSING study (cryoballoon-ablation DOSING based on the assessment of time-to-effect and pulmonary vein isolation guidance). Heart Rhythm. 2017;14(9):1319–25. https://doi.org/10.1016/j.hrthm.2017.06.020.

    Article  PubMed  Google Scholar 

  32. Aryana A, Kowalski M, O’Neill PG, et al. Catheter ablation using the third-generation cryoballoon provides an enhanced ability to assess time to pulmonary vein isolation facilitating the ablation strategy: Short- and long-term results of a multicenter study. Heart Rhythm. 2016;13(12):2306–13. https://doi.org/10.1016/j.hrthm.2016.08.011.

    Article  PubMed  Google Scholar 

  33. Rottner L, Mathew S, Reissmann B, et al. Feasibility, safety, and acute efficacy of the fourth-generation cryoballoon for ablation of atrial fibrillation: another step forward? Clin Cardiol. 2020;43(4):394–400. https://doi.org/10.1002/clc.23328.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mathew S, Rottner L, Warneke L, et al. Initial experience and procedural efficacy of pulmonary vein isolation using the fourth-generation cryoballoon - a step forward? Acta Cardiol. 2020;75(8):754–9. https://doi.org/10.1080/00015385.2019.1677373.

    Article  PubMed  Google Scholar 

  35. Straube F, Dorwarth U, Pongratz J, et al. The fourth cryoballoon generation with a shorter tip to facilitate real-time pulmonary vein potential recording: feasibility and safety results. J Cardiovasc Electrophysiol. 2019;30(6):918–25. https://doi.org/10.1111/jce.13927.

    Article  PubMed  Google Scholar 

  36. Kuck KH, Brugada J, Fürnkranz A, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374(23):2235–45. https://doi.org/10.1056/NEJMoa1602014.

    Article  PubMed  Google Scholar 

  37. Wu C, Li X, Lv Z, et al. Second-generation cryoballoon versus contact force radiofrequency ablation for atrial fibrillation: an updated meta-analysis of evidence from randomized controlled trials. Sci Rep. 2021;11(1):17907. https://doi.org/10.1038/s41598-021-96820-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andrade JG, Wells GA, Deyell MW, et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2020;384(4):305–15. https://doi.org/10.1056/NEJMoa2029980.

    Article  PubMed  Google Scholar 

  39. Miyazaki S, Kajiyama T, Yamao K, et al. Silent cerebral events/lesions after second-generation cryoballoon ablation: how can we reduce the risk of silent strokes? Heart Rhythm. 2019;16(1):41–8. https://doi.org/10.1016/j.hrthm.2018.07.011.

    Article  PubMed  Google Scholar 

  40. Deneke T, Jais P, Scaglione M, et al. Silent cerebral events/lesions related to atrial fibrillation ablation: a clinical review. J Cardiovasc Electrophysiol. 2015;26(4):455–63. https://doi.org/10.1111/jce.12608.

    Article  PubMed  Google Scholar 

  41. Kajiyama T, Miyazaki S, Matsuda J, et al. Anatomic parameters predicting procedural difficulty and balloon temperature predicting successful applications in individual pulmonary veins during 28-mm second-generation cryoballoon ablation. JACC Clin Electrophysiol. 2017;3(6):580–8. https://doi.org/10.1016/j.jacep.2017.01.004.

    Article  PubMed  Google Scholar 

  42. Nanbu T, Yotsukura A, Suzuki G, et al. Important factors in left atrial posterior wall isolation using 28-mm cryoballoon ablation for persistent atrial fibrillation-block line or isolation area? J Cardiovasc Electrophysiol. 2020;31(1):119–27. https://doi.org/10.1111/jce.14281.

    Article  PubMed  Google Scholar 

  43. Iacopino S, Paparella G, Capulzini L, et al. Posterior box isolation as an adjunctive ablation strategy during repeat ablation with the second-generation cryoballoon for recurrence of persistent atrial fibrillation: 1-year follow-up. J Interv Card Electrophysiol. 2019;56(1):1–7. https://doi.org/10.1007/s10840-019-00551-w.

    Article  PubMed  Google Scholar 

  44. Aryana A, Baker JH, Espinosa Ginic MA, et al. Posterior wall isolation using the cryoballoon in conjunction with pulmonary vein ablation is superior to pulmonary vein isolation alone in patients with persistent atrial fibrillation: a multicenter experience. Heart Rhythm. 2018;15(8):1121–9. https://doi.org/10.1016/j.hrthm.2018.05.014.

    Article  PubMed  Google Scholar 

  45. Nishimura T, Yamauchi Y, Aoyagi H, et al. The clinical impact of the left atrial posterior wall lesion formation by the cryoballoon application for persistent atrial fibrillation: feasibility and clinical implications. J Cardiovasc Electrophysiol. 2019;30(6):805–14. https://doi.org/10.1111/jce.13879.

    Article  PubMed  Google Scholar 

  46. Kochi AN, Moltrasio M, Tundo F, et al. Cryoballoon atrial fibrillation ablation: single-center safety and efficacy data using a novel cryoballoon technology compared to a historical balloon platform. J Cardiovasc Electrophysiol. 2021;32(3):588–94. https://doi.org/10.1111/jce.14930.

    Article  PubMed  Google Scholar 

  47. Tilz RR, Meyer-Saraei R, Eitel C et al. Novel cryoballoon ablation system for single shot pulmonary vein isolation-the prospective ICE-AGE-X study. Circulation Journal. 2021;advpub. https://doi.org/10.1253/circj.CJ-21-0094.

  48. Satake S, Tanaka K, Saito S, et al. Usefulness of a new radiofrequency thermal balloon catheter for pulmonary vein isolation: a new device for treatment of atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14(6):609–15. https://doi.org/10.1046/j.1540-8167.2003.02577.x.

    Article  PubMed  Google Scholar 

  49. Sohara H, Takeda H, Ueno H, Oda T, Satake S. Feasibility of the radiofrequency hot balloon catheter for isolation of the posterior left atrium and pulmonary veins for the treatment of atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2(3):225–32. https://doi.org/10.1161/circep.108.817205.

    Article  PubMed  Google Scholar 

  50. Sohara H, Satake S, Takeda H, et al. Radiofrequency hot balloon catheter ablation for the treatment of atrial fibrillation: a 3-center study in Japan. J Arrhythm. 2013;29(1):20–7. https://doi.org/10.1016/j.joa.2012.07.005.

    Article  Google Scholar 

  51. Sohara H, Ohe T, Okumura K, et al. HotBalloon ablation of the pulmonary veins for paroxysmal AF: a multicenter randomized trial in Japan. J Am Coll Cardiol. 2016;68(25):2747–57. https://doi.org/10.1016/j.jacc.2016.10.037.

    Article  PubMed  Google Scholar 

  52. Yamasaki H, Aonuma K, Shinoda Y, et al. Initial result of antrum pulmonary vein isolation using the radiofrequency hot-balloon catheter with single-shot technique. JACC Clin Electrophysiol. 2019;5(3):354–63. https://doi.org/10.1016/j.jacep.2019.01.017.

    Article  PubMed  Google Scholar 

  53. Wakamatsu Y, Nakahara S, Nagashima K, et al. Hot balloon versus cryoballoon ablation for persistent atrial fibrillation: lesion area, efficacy, and safety. J Cardiovasc Electrophysiol. 2020;31(9):2310–8. https://doi.org/10.1111/jce.14646.

    Article  PubMed  Google Scholar 

  54. Nagashima K, Okumura Y, Watanabe I, et al. Hot balloon versus cryoballoon ablation for atrial fibrillation: lesion characteristics and middle-term outcomes. Circ Arrhythm Electrophysiol. 2018;11(5): e005861. https://doi.org/10.1161/circep.117.005861.

    Article  PubMed  Google Scholar 

  55. Dhillon GS, Honarbakhsh S, Di Monaco A, et al. Use of a multi-electrode radiofrequency balloon catheter to achieve pulmonary vein isolation in patients with paroxysmal atrial fibrillation: 12-month outcomes of the RADIANCE study. J Cardiovasc Electrophysiol. 2020;31(6):1259–69. https://doi.org/10.1111/jce.14476.

    Article  PubMed  Google Scholar 

  56. Reddy VY, Al-Ahmad A, Aidietis A, et al. A novel visually guided radiofrequency balloon ablation catheter for pulmonary vein isolation: one-year outcomes of the multicenter AF-FICIENT I trial. Circ: Arrhythmia Electrophysiol. 2021. https://doi.org/10.1161/CIRCEP.120.009308.

    Article  Google Scholar 

  57. Kottkamp H, Hindricks G, Pönisch C, et al. Global multielectrode contact-mapping plus ablation with a single catheter in patients with atrial fibrillation: Global AF study. J Cardiovasc Electrophysiol. 2019;30(11):2248–55. https://doi.org/10.1111/jce.14172.

    Article  PubMed  Google Scholar 

  58. Heeger CH, Tiemeyer CM, Phan HL, et al. Rapid pulmonary vein isolation utilizing the third-generation laserballoon - the PhoeniX registry. Int J Cardiol Heart Vasc. 2020;29: 100576. https://doi.org/10.1016/j.ijcha.2020.100576.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schmidt B, Petru J, Chun KRJ, et al. Pivotal study of a novel motor-driven endoscopic ablation system. Circ Arrhythm Electrophysiol. 2021;14(3):e009544. https://doi.org/10.1161/circep.120.009544.

    Article  PubMed  Google Scholar 

  60. Dukkipati SR, Cuoco F, Kutinsky I, et al. Pulmonary vein isolation using the visually guided laser balloon: a prospective, multicenter, and randomized comparison to standard radiofrequency ablation. J Am Coll Cardiol. 2015;66(12):1350–60. https://doi.org/10.1016/j.jacc.2015.07.036.

    Article  PubMed  Google Scholar 

  61. Schmidt B, Neuzil P, Luik A et al. Laser balloon or wide-area circumferential irrigated radiofrequency ablation for persistent atrial fibrillation: a multicenter prospective randomized study. Circ Arrhythm Electrophysiol. 2017;10(12). https://doi.org/10.1161/circep.117.005767.

  62. Chun JKR, Bordignon S, Last J, et al. Cryoballoon versus laserballoon: insights from the first prospective randomized balloon trial in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2021;14(2):e009294. https://doi.org/10.1161/circep.120.009294.

    Article  PubMed  Google Scholar 

  63. Reissmann B, Budelmann T, Wissner E, et al. Five-year clinical outcomes of visually guided laser balloon pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation. Clin Res Cardiol. 2018;107(5):405–12. https://doi.org/10.1007/s00392-017-1199-6.

    Article  PubMed  Google Scholar 

  64. Wissner E, Metzner A, Neuzil P, et al. Asymptomatic brain lesions following laserballoon-based pulmonary vein isolation. EP Europace. 2014;16(2):214–9. https://doi.org/10.1093/europace/eut250.

    Article  Google Scholar 

  65. Dulai R, Sulke N, Furniss S, Veasey RA. The effect of second-generation cryoablation without electrical mapping in persistent AF using continuous monitoring. J Interv Card Electrophysiol. 2021;60(2):175–82. https://doi.org/10.1007/s10840-020-00721-1.

    Article  PubMed  Google Scholar 

  66. Wazni OM, Dandamudi G, Sood N, et al. Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2020;384(4):316–24. https://doi.org/10.1056/NEJMoa2029554.

    Article  PubMed  Google Scholar 

  67. Verma A, Jiang CY, Betts TR, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372(19):1812–22. https://doi.org/10.1056/NEJMoa1408288.

    Article  PubMed  Google Scholar 

  68. Abeln BGS, Simmers TA, Maarse M et al. First clinical experience with KODEX-EPD: a novel dielectric imaging and navigation system for catheter ablation. European Heart Journal. 2020;41(Supplement_2):ehaa946.0428. https://doi.org/10.1093/ehjci/ehaa946.0428.

  69. Reddy VY, Neuzil P, Koruth JS, et al. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol. 2019;74(3):315–26. https://doi.org/10.1016/j.jacc.2019.04.021.

    Article  PubMed  Google Scholar 

  70. Bradley CJ, Haines DE. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J Cardiovasc Electrophysiol. 2020;31(8):2136–47. https://doi.org/10.1111/jce.14414.

    Article  PubMed  Google Scholar 

  71. Reddy VY, Dukkipati SR, Neuzil P, et al. Pulsed field ablation of paroxysmal atrial fibrillation: 1-year outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin Electrophysiol. 2021;7(5):614–27. https://doi.org/10.1016/j.jacep.2021.02.014.

    Article  PubMed  Google Scholar 

  72. Nakatani Y, Sridi-Cheniti S, Cheniti G, et al. Pulsed field ablation prevents chronic atrial fibrotic changes and restrictive mechanics after catheter ablation for atrial fibrillation. Europace : European pacing, arrhythmias, cardiac electrophysiology : j working groups cardiac pacing, arrhythmias,cardiac cell electrophysiol European Soc Cardiol. 2021;23(11):1767–76. https://doi.org/10.1093/europace/euab155.

    Article  Google Scholar 

  73. Cochet H, Nakatani Y, Sridi-Cheniti S, et al. Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation. Europace. 2021;23(9):1391–9. https://doi.org/10.1093/europace/euab090.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kawamura I, Neuzil P, Shivamurthy P, et al. How does the level of pulmonary venous isolation compare between pulsed field ablation and thermal energy ablation (radiofrequency, cryo, or laser)? Europace. 2021. https://doi.org/10.1093/europace/euab150.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van Zyl M, Ladejobi AO, Tri JA, et al. Reversible atrioventricular conduction impairment following bipolar nanosecond electroporation of the interventricular septum. JACC Clin Electrophysiol. 2021;7(2):255–7. https://doi.org/10.1016/j.jacep.2020.10.004

    Article  PubMed  Google Scholar 

  76. Di Biase L, Romero J. Left ventricular high-power catheter ablation: implications for microbubble/microemboli formation: what is the price of success?∗. JACC: Clinical Electrophysiology. 2022;8(1):38–40. https://doi.org/10.1016/j.jacep.2021.08.013

  77. Bachu VS, Kedda J, Suk I, Green JJ, Tyler B. High-intensity focused ultrasound: a review of mechanisms and clinical applications. Ann Biomed Eng. 2021. https://doi.org/10.1007/s10439-021-02833-9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Singh S, Mohanan Nair KK, Koruth J, d'Avila A, Danon A. The role of high-intensity focused ultrasound in ablation of atrial fibrillation and other cardiac arrhythmias. Research and Reports in Focused Ultrasound. 2015:11. https://doi.org/10.2147/RRFU.S81794.

  79. Nath S, Redick JA, Whayne JG, Haines DE. Ultrastructural observations in the myocardium beyond the region of acute coagulation necrosis following radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 1994;5(10):838–45. https://doi.org/10.1111/j.1540-8167.1994.tb01122.x.

    Article  CAS  PubMed  Google Scholar 

  80. Engel DJ, Muratore R, Hirata K, et al. Myocardial lesion formation using high-intensity focused ultrasound. J Am Soc Echocardiogr. 2006;19(7):932–7. https://doi.org/10.1016/j.echo.2006.02.012.

    Article  PubMed  Google Scholar 

  81. Schmidt B, Antz M, Ernst S, et al. Pulmonary vein isolation by high-intensity focused ultrasound: first-in-man study with a steerable balloon catheter. Heart Rhythm. 2007;4(5):575–84. https://doi.org/10.1016/j.hrthm.2007.01.017.

    Article  PubMed  Google Scholar 

  82. Schmidt B, Chun KR, Metzner A, et al. Pulmonary vein isolation with high-intensity focused ultrasound: results from the HIFU 12F study. Europace. 2009;11(10):1281–8. https://doi.org/10.1093/europace/eup208.

    Article  PubMed  Google Scholar 

  83. Neven K, Schmidt B, Metzner A, et al. Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circ Arrhythm Electrophysiol. 2010;3(3):260–5. https://doi.org/10.1161/circep.109.922930.

    Article  PubMed  Google Scholar 

  84. Ghia KK, Chugh A, Good E, et al. A nationwide survey on the prevalence of atrioesophageal fistula after left atrial radiofrequency catheter ablation. J Interv Card Electrophysiol. 2009;24(1):33–6. https://doi.org/10.1007/s10840-008-9307-1.

    Article  PubMed  Google Scholar 

  85. Black-Maier E, Pokorney SD, Barnett AS, et al. Risk of atrioesophageal fistula formation with contact force-sensing catheters. Heart Rhythm. 2017;14(9):1328–33. https://doi.org/10.1016/j.hrthm.2017.04.024.

    Article  PubMed  Google Scholar 

  86. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444. https://doi.org/10.1016/j.hrthm.2017.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Grosse Meininghaus D, Blembel K, Waniek C, et al. Temperature monitoring and temperature-driven irrigated radiofrequency energy titration do not prevent thermally induced esophageal lesions in pulmonary vein isolation: a randomized study controlled by esophagoscopy before and after catheter ablation. Heart Rhythm. 2021;18(6):926–34. https://doi.org/10.1016/j.hrthm.2021.02.003.

    Article  PubMed  Google Scholar 

  88. Koranne K, Basu-Ray I, Parikh V, et al. Esophageal temperature monitoring during radiofrequency ablation of atrial fibrillation: a meta-analysis. J Atr Fibrillation. 2016;9(4):1452. https://doi.org/10.4022/jafib.1452.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schoene K, Arya A, Grashoff F, et al. Oesophageal Probe Evaluation in Radiofrequency Ablation of Atrial Fibrillation (OPERA): results from a prospective randomized trial. EP Europace. 2020;22(10):1487–94. https://doi.org/10.1093/europace/euaa209.

    Article  Google Scholar 

  90. Chen S, Schmidt B, Seeger A, et al. Catheter ablation of atrial fibrillation using ablation index–guided high power (50 W) for pulmonary vein isolation with or without esophageal temperature probe (the AI-HP ESO II). Heart Rhythm. 2020;17(11):1833–40. https://doi.org/10.1016/j.hrthm.2020.05.029.

    Article  PubMed  Google Scholar 

  91. Singh SM, d’Avila A, Doshi SK, et al. Esophageal injury and temperature monitoring during atrial fibrillation ablation. Circ: Arrhythmia Electrophysiol. 2008;1(3):162–8. https://doi.org/10.1161/CIRCEP.108.789552

    Article  Google Scholar 

  92. Müller P, Dietrich J-W, Halbfass P, et al. Higher incidence of esophageal lesions after ablation of atrial fibrillation related to the use of esophageal temperature probes. Heart Rhythm. 2015;12(7):1464–9. https://doi.org/10.1016/j.hrthm.2015.04.005.

    Article  PubMed  Google Scholar 

  93. Tsao HM, Wu MH, Higa S, et al. Anatomic relationship of the esophagus and left atrium: implication for catheter ablation of atrial fibrillation. Chest. 2005;128(4):2581–7. https://doi.org/10.1378/chest.128.4.2581.

    Article  PubMed  Google Scholar 

  94. Piccini JP, Braegelmann KM, Simma S, Koneru JN, Ellenbogen KA. Risk of atrioesophageal fistula with cryoballoon ablation of atrial fibrillation. Heart Rhythm O2. 2020;1(3):173–9. https://doi.org/10.1016/j.hroo.2020.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Palaniswamy C, Koruth Jacob S, Mittnacht Alexander J, et al. The extent of mechanical esophageal deviation to avoid esophageal heating during catheter ablation of atrial fibrillation. JACC: Clin Electrophysiol. 2017;3(10):1146–54. https://doi.org/10.1016/j.jacep.2017.03.017.

    Article  PubMed  Google Scholar 

  96. Herweg B, Johnson N, Postler G, et al. Mechanical esophageal deflection during ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2006;29(9):957–61. https://doi.org/10.1111/j.1540-8159.2006.00470.x.

    Article  PubMed  Google Scholar 

  97. Mateos JC, Mateos EI, Peña TG, et al. Simplified method for esophagus protection during radiofrequency catheter ablation of atrial fibrillation–prospective study of 704 cases. Rev Bras Cir Cardiovasc. 2015;30(2):139–47. https://doi.org/10.5935/1678-9741.20150009.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Houmsse M, Daoud EG. Protection of the esophagus during catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2021. https://doi.org/10.1111/jce.14934.

    Article  PubMed  Google Scholar 

  99. Parikh V, Swarup V, Hantla J, et al. Feasibility, safety, and efficacy of a novel preshaped nitinol esophageal deviator to successfully deflect the esophagus and ablate left atrium without esophageal temperature rise during atrial fibrillation ablation: the DEFLECT GUT study. Heart Rhythm. 2018;15(9):1321–7. https://doi.org/10.1016/j.hrthm.2018.04.017.

    Article  PubMed  Google Scholar 

  100. Bhardwaj R, Naniwadekar A, Whang W, et al. Esophageal deviation during atrial fibrillation ablation. JACC: Clin Electrophysiol. 2018;4(8):1020–30. https://doi.org/10.1016/j.jacep.2018.04.001.

    Article  PubMed  Google Scholar 

  101. Aguinaga L, Palazzo A, Bravo A, et al. Esophageal deviation with vacuum suction and mechanical deflection during ablation of atrial fibrillation: first in man evaluation. J Cardiovasc Electrophysiol. 2021;32(1):67–70. https://doi.org/10.1111/jce.14801.

    Article  PubMed  Google Scholar 

  102. Kuwahara T, Takahashi A, Okubo K, et al. Oesophageal cooling with ice water does not reduce the incidence of oesophageal lesions complicating catheter ablation of atrial fibrillation: randomized controlled study. Europace. 2014;16(6):834–9. https://doi.org/10.1093/europace/eut368.

    Article  PubMed  Google Scholar 

  103. Sohara H, Satake S, Takeda H, Yamaguchi Y, Nagasu N. Prevalence of esophageal ulceration after atrial fibrillation ablation with the hot balloon ablation catheter: what is the value of esophageal cooling? J Cardiovasc Electrophysiol. 2014;25(7):686–92. https://doi.org/10.1111/jce.12394.

    Article  PubMed  Google Scholar 

  104. Leung LWM, Bajpai A, Zuberi Z, et al. Randomized comparison of oesophageal protection with a temperature control device: results of the IMPACT study. EP Europace. 2021;23(2):205–15. https://doi.org/10.1093/europace/euaa276.

    Article  Google Scholar 

  105. Deyell MW, Leather RA, Macle L, et al. Efficacy and safety of same-day discharge for atrial fibrillation ablation. JACC Clin Electrophysiol. 2020;6(6):609–19. https://doi.org/10.1016/j.jacep.2020.02.009.

    Article  PubMed  Google Scholar 

  106. Field ME, Goldstein L, Corriveau K, et al. Evaluating outcomes of same-day discharge after catheter ablation for atrial fibrillation in a real-world cohort. Heart Rhythm O2. 2021;2(4):333–40. https://doi.org/10.1016/j.hroo.2021.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bailey SA, Subramanian K, Sanchez J, et al. Same Day versus Overnight Discharge in Patients Undergoing Ablation for Atrial Fibrillation (SODA) study. J Atr Fibrillation. 2021;14(2):20200499. https://doi.org/10.4022/jafib.20200499.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Creta A, Ventrella N, Providência R, et al. Same-day discharge following catheter ablation of atrial fibrillation: a safe and cost-effective approach. J Cardiovasc Electrophysiol. 2020;31(12):3097–103. https://doi.org/10.1111/jce.14789.

    Article  PubMed  Google Scholar 

  109. Natale A, Mohanty S, Liu PY, et al. Venous vascular closure system versus manual compression following multiple access electrophysiology procedures: the AMBULATE trial. JACC Clin Electrophysiol. 2020;6(1):111–24. https://doi.org/10.1016/j.jacep.2019.08.013.

    Article  PubMed  Google Scholar 

  110. Aytemir K, Canpolat U, Yorgun H, et al. Usefulness of “figure-of-eight” suture to achieve haemostasis after removal of 15-French calibre femoral venous sheath in patients undergoing cryoablation. Europace. 2016;18(10):1545–50. https://doi.org/10.1093/europace/euv375.

    Article  PubMed  Google Scholar 

  111. Kumar V, Wish M, Venkataraman G, et al. A randomized comparison of manual pressure versus figure-of-eight suture for hemostasis after cryoballoon ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2019;30(12):2806–10. https://doi.org/10.1111/jce.14252.

    Article  PubMed  Google Scholar 

  112. Mohammed M, Ramirez R, Steinhaus DA, et al. Comparative outcomes of vascular access closure methods following atrial fibrillation/flutter catheter ablation: insights from VAscular Closure for Cardiac Ablation Registry. J Interv Card Electrophysiol. 2021. https://doi.org/10.1007/s10840-021-00981-5.

    Article  PubMed  Google Scholar 

  113. Kar S, Hermiller J, Conn K, Shu Y, Sampat K. CRT-200.28 The use of the Perclose Proglide Suture Mediated Closure (SMC) device for vein artery access site closure up to 24F sheaths. JACC: Cardiovascular Interventions. 2018;11(4_Supplement):S35-S. https://doi.org/10.1016/j.jcin.2018.01.112.

  114. Heeger CH, Sohns C, Pott A, et al. Phrenic nerve injury during cryoballoon-based pulmonary vein isolation: results of the worldwide YETI registry. Circ: Arrhythmia Electrophysiol. 2022;15(1):e010516. https://doi.org/10.1161/CIRCEP.121.010516.

    Article  CAS  Google Scholar 

  115. Parikh V, Kowalski M. Comparison of phrenic nerve injury during atrial fibrillation ablation between different modalities, pathophysiology and management. J Atr Fibrillation. 2015;8(4):1314. https://doi.org/10.4022/jafib.1314.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nyong J, Amit G, Adler AJ, et al. Efficacy and safety of ablation for people with non-paroxysmal atrial fibrillation. Cochrane Database Syst Rev. 2016;11(11):Cd012088. https://doi.org/10.1002/14651858.CD012088.pub2

    Article  PubMed  Google Scholar 

  117. Morton JB, Byrne MJ, Power JM, Raman J, Kalman JM. Electrical remodeling of the atrium in an anatomic model of atrial flutter: relationship between substrate and triggers for conversion to atrial fibrillation. Circulation. 2002;105(2):258–64. https://doi.org/10.1161/hc0202.102012.

    Article  PubMed  Google Scholar 

  118. Willems S, Verma A, Betts TR, et al. Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density mapping. Circ: Arrhythmia Electrophysiol. 2019;12(7):e007233. https://doi.org/10.1161/CIRCEP.119.007233.

    Article  Google Scholar 

  119. Grace A, Willems S, Meyer C et al. High-resolution noncontact charge-density mapping of endocardial activation. JCI Insight. 2019;4(6). https://doi.org/10.1172/jci.insight.126422

  120. Ramak R, Chierchia GB, Paparella G, et al. Novel noncontact charge density map in the setting of post-atrial fibrillation atrial tachycardias: first experience with the Acutus SuperMap Algorithm. J Interv Card Electrophysiol. 2021;61(1):187–95. https://doi.org/10.1007/s10840-020-00808-9.

    Article  PubMed  Google Scholar 

  121. Wann D, Waks JW, Kramer DB. Clinical and regulatory considerations for novel electrophysiology mapping systems: lessons from FIRM. Pacing Clin Electrophysiol. 2018;41(12):1669–80. https://doi.org/10.1111/pace.13509.

    Article  PubMed  Google Scholar 

  122. Narayan SM, Krummen DE, Clopton P, Shivkumar K, Miller JM. Direct or coincidental elimination of stable rotors or focal sources may explain successful atrial fibrillation ablation: on-treatment analysis of the CONFIRM trial (Conventional ablation for AF with or without focal impulse and rotor modulation). J Am Coll Cardiol. 2013;62(2):138–47. https://doi.org/10.1016/j.jacc.2013.03.021.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Narayan SM, Baykaner T, Clopton P, et al. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation). J Am Coll Cardiol. 2014;63(17):1761–8. https://doi.org/10.1016/j.jacc.2014.02.543.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Baykaner T, Duff S, Hasegawa JT, Mafilios MS, Turakhia MP. Cost effectiveness of focal impulse and rotor modulation guided ablation added to pulmonary vein isolation for atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29(4):526–36. https://doi.org/10.1111/jce.13449.

    Article  PubMed  Google Scholar 

  125. Gianni C, Mohanty S, Di Biase L, et al. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm. 2016;13(4):830–5. https://doi.org/10.1016/j.hrthm.2015.12.028.

    Article  PubMed  Google Scholar 

  126. Brachmann J, Hummel JD, Wilber DJ, et al. Prospective randomized comparison of rotor ablation vs conventional ablation for treatment of persistent atrial fibrillation—the REAFFIRM trial. Heart Rhythm. 2019;16(6):963–5.

    Google Scholar 

  127. El Moheb M, Refaat MM. FIRM-guided ablation for recurrent atrial fibrillation with pulmonary vein reconnection: lessons learned. J Cardiovasc Electrophysiol. 2020;31(5):1038–9. https://doi.org/10.1111/jce.14427.

    Article  PubMed  Google Scholar 

  128. Peigh G, Wasserlauf J, Kaplan RM, et al. Repeat pulmonary vein isolation with or without FIRM-guided ablation for recurrent atrial fibrillation with pulmonary vein reconnection. J Cardiovasc Electrophysiol. 2020;31(5):1031–7. https://doi.org/10.1111/jce.14426.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Maurer T, Mathew S, Schlüter M, et al. High-resolution imaging of LA anatomy using a novel wide-band dielectric mapping system: first clinical experience. JACC Clin Electrophysiol. 2019;5(11):1344–54. https://doi.org/10.1016/j.jacep.2019.06.020.

    Article  PubMed  Google Scholar 

  130. Zhao Y, Di Biase L, Trivedi C, et al. Importance of non-pulmonary vein triggers ablation to achieve long-term freedom from paroxysmal atrial fibrillation in patients with low ejection fraction. Heart Rhythm. 2016;13(1):141–9. https://doi.org/10.1016/j.hrthm.2015.08.029.

    Article  PubMed  Google Scholar 

  131. Santangeli P, Marchlinski FE. Techniques for the provocation, localization, and ablation of non-pulmonary vein triggers for atrial fibrillation. Heart Rhythm. 2017;14(7):1087–96. https://doi.org/10.1016/j.hrthm.2017.02.030.

    Article  PubMed  Google Scholar 

  132. Rodríguez-Mañero M, Schurmann P, Valderrábano M. Ligament and vein of Marshall: a therapeutic opportunity in atrial fibrillation. Heart Rhythm. 2016;13(2):593–601. https://doi.org/10.1016/j.hrthm.2015.10.018.

    Article  PubMed  Google Scholar 

  133. Báez-Escudero JL, Keida T, Dave AS, Okishige K, Valderrábano M. Ethanol infusion in the vein of Marshall leads to parasympathetic denervation of the human left atrium: implications for atrial fibrillation. J Am Coll Cardiol. 2014;63(18):1892–901. https://doi.org/10.1016/j.jacc.2014.01.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu CM, Lo LW, Lin YJ, et al. Long-term efficacy and safety of adjunctive ethanol infusion into the vein of Marshall during catheter ablation for nonparoxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2019;30(8):1215–28. https://doi.org/10.1111/jce.13969.

    Article  PubMed  Google Scholar 

  135. Valderrábano M, Peterson LE, Swarup V, et al. Effect of catheter ablation with vein of marshall ethanol infusion vs catheter ablation alone on persistent atrial fibrillation: the VENUS randomized clinical trial. JAMA. 2020;324(16):1620–8. https://doi.org/10.1001/jama.2020.16195.

    Article  PubMed  Google Scholar 

  136. Schillaci V, Stabile G, Shopova G, Arestia A, Solimene F. Utility of a new imaging system for displaying complex anatomy during AF ablation with cryoenergy. Int J Arrhythmia. 2020;21(1):11. https://doi.org/10.1186/s42444-020-00019-3.

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review article conception, data collection, and writing.

Corresponding author

Correspondence to Mihail G. Chelu.

Ethics declarations

Ethics approval

Not applicable to this review article.

Consent to participate

Not applicable.

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.A., Khan, K., Kherallah, R. et al. Innovations in atrial fibrillation ablation. J Interv Card Electrophysiol 66, 737–756 (2023). https://doi.org/10.1007/s10840-022-01215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01215-y

Keywords

Navigation