Skip to main content
Log in

High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

High Intensity Focused Ultrasound (HIFU) is an emerging and increasingly useful modality in the treatment of cancer and other diseases. Although traditional use of ultrasound at lower frequencies has primarily been for diagnostic imaging purposes, the development of HIFU has allowed this particular modality to expand into therapeutic use. This non-invasive and acoustic method involves the use of a piezoelectric transducer to deliver high-energy pulses in a spatially coordinated manner, while minimizing damage to tissue outside the target area. This review describes the history of the development of diagnostic and therapeutic ultrasound and explores the biomedical applications utilizing HIFU technology including thermally ablative treatment, therapeutic delivery mechanisms, and neuromodulatory phenomena. The application of HIFU across various tumor types in multiple organ systems is explored in depth, with particular attention to successful models of HIFU in the treatment of various medical conditions. Basic mechanisms, preclinical models, previous clinical use, and ongoing clinical trials are comparatively discussed. Recent advances in HIFU across multiple medical fields reveal the growing importance of this biomedical technology for the care of patients and for the development of possible pathways for the future use of HIFU as a commonplace treatment modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

© 2021 Johns Hopkins University All rights reserved. Ian Suk.

Figure 2

Figure reproduced with permission from Nano Lett. 2017, 17, 2, 652–659, Publication Date: January 17, 2017, https://doi.org/10.1021/acs.nanolett.6b03517, Copyright © 2017 American Chemical Society.1

Figure 3
Figure 4

available at https://www.karger.com/Article/Fulltext/499739.19

Figure 5

Similar content being viewed by others

References

  1. Airan, R. D., R. A. Meyer, N. P. K. Ellens, K. R. Rhodes, K. Farahani, M. G. Pomper, S. D. Kadam, and J. J. Green. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17:652–659, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. APA. This Month In Physics History at https://www.aps.org/publications/apsnews/201403/physicshistory.cfm

  3. Bing, C., P. Patel, R. M. Staruch, S. Shaikh, J. Nofiele, M. Wodzak Staruch, D. Szczepanski, N. S. Williams, T. Laetsch, and R. Chopra. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int. J. Hyperthermia. 36:196–203, 2019.

    PubMed  Google Scholar 

  4. BioSpace. FDA Approves Use of InSightec’s ExAblate(R) 2000 With GE Healthcare’s 3 Tesla Magnetic Resonance Imaging System | BioSpace at https://www.biospace.com/article/releases/fda-approves-use-of-insightec-s-exablate-r-2000-with-ge-healthcare-s-3-tesla-magnetic-resonance-imaging-system-/.

  5. Bowary, P., and B. D. Greenberg. Noninvasive focused ultrasound for neuromodulation: A review. Psychiatr Clin North Am. 41(3):505–514, 2018.

    Article  PubMed  Google Scholar 

  6. Burgess, A., K. Shah, O. Hough, and K. Hynynen. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev. Neurother. 15(5):477–91, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Canavese, G., A. Ancona, L. Racca, M. Canta, B. Dumontel, F. Barbaresco, T. Limongi, and V. Cauda. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem. Eng. J. 340:155–172, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan, T. G., S. V. Morse, M. J. Copping, J. J. Choi, and R. Vilar. Targeted delivery of DNA-Au nanoparticles across the blood–brain barrier using focused ultrasound. ChemMedChem. 13:1311–1314, 2018.

    Article  CAS  PubMed  Google Scholar 

  9. Chang, H. J. Effect of ultrasound on tissues. Acta Ophthalmol. 41:17–20, 2009.

    Google Scholar 

  10. Clinical Trials Gov. Search of: focused ultrasound | Adenomyosis - List Results - ClinicalTrials.gov at https://clinicaltrials.gov/ct2/results?cond=Adenomyosis&term=focused+ultrasound&cntry=&state=&city=&dist=

  11. Clinical Trials Gov. Search of: HIFU | Recruiting, Active, not recruiting, Completed Studies | Uterine Adenomyosis - List Results - ClinicalTrials.gov at https://www.clinicaltrials.gov/ct2/results?term=HIFU&cond=Uterine+Adenomyosis&Search=Apply&recrs=a&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=.

  12. Clinical Trials Gov. Search of: HIFU | Recruiting, Active, not recruiting, Completed Studies | Uterine Leiomyoma - List Results - ClinicalTrials.gov at https://www.clinicaltrials.gov/ct2/results?term=HIFU&cond=Uterine+Leiomyoma&Search=Apply&recrs=a&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=

  13. ClinicalTrialsGov. Bilateral Treatment of Medication Refractory Essential Tremor - Full Text View - ClinicalTrials.gov at https://clinicaltrials.gov/ct2/show/NCT04112381?term=04112381&draw=2&rank=1

  14. ClinicalTrialsGov. Staged Bilateral Exablate Treatment of Medication Refractory Essential Tremor - Full Text View - ClinicalTrials.gov at https://clinicaltrials.gov/ct2/show/NCT03465761?term=03465761&draw=2&rank=1

  15. Clinical Trials Gov. Home - ClinicalTrials.gov at https://www.clinicaltrials.gov/

  16. Colloca, L., T. Ludman, D. Bouhassira, R. Baron, A. H. Dickenson, D. Yarnitsky, R. Freeman, A. Truini, N. Attal, N. B. Finnerup, C. Eccleston, E. Kalso, D. L. Bennett, R. H. Dworkin, and S. N. Raja. Neuropathic pain. Nat. Rev. Dis. Primers. 3:17002, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crouzet, S., A. Blana, F. J. Murat, G. Pasticier, S. C. W. Brown, G. N. Conti, R. Ganzer, O. Chapet, A. Gelet, C. G. Chaussy, C. N. Robertson, S. Thuroff, and J. F. Ward. Salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after failed radiation therapy: Multi-institutional analysis of 418 patients. BJU Int. 119:896–904, 2017.

    Article  PubMed  Google Scholar 

  18. Dallapiazza, R. F., K. F. Timbie, S. Holmberg, J. Gatesman, M. B. Lopes, R. J. Price, G. W. Miller, and W. J. Elias. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J. Neurosurg. 128:875–884, 2018.

    Article  PubMed  Google Scholar 

  19. Davies, I. A. I., L. R. Gavrilov, and E. M. Tsirulnikov. Application of focused ultrasound for research on pain. Pain. 67:17–27, 1996.

    Article  PubMed  Google Scholar 

  20. Deffieux, T., Y. Younan, N. Wattiez, M. Tanter, P. Pouget, and J. F. Aubry. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr. Biol. 23:2430–2433, 2013.

    Article  CAS  PubMed  Google Scholar 

  21. Diagnostic Imaging. High-intensity focused ultrasound use widens in research, practice at https://www.diagnosticimaging.com/view/high-intensity-focused-ultrasound-use-widens-research-practice

  22. Dromi, S., V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J. Xie, S. K. Libutti, K. C. P. Li, and B. J. Wood. Pulsed-high intensity focused ultrasound and low temperature—Sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clinical Cancer Res. 13:2722–2727, 2007.

    Article  CAS  Google Scholar 

  23. D’Agostino, R. B., L. Sullivan, and J. Massaro (eds.). Premarket Approval (PMA). New York: Wiley Encyclopedia of Clinical Trials, 2008. https://doi.org/10.1002/9780471462422.eoct545.

    Book  Google Scholar 

  24. Endo, M., and P. P. Lin. Surgical margins in the management of extremity soft tissue sarcoma. Chin. Clin. Oncol. 7:4, 2018.

    Article  Google Scholar 

  25. FDA. FDA approves first MRI-guided focused ultrasound device to treat essential tremor | FDA at https://www.fda.gov/news-events/press-announcements/fda-approves-first-mri-guided-focused-ultrasound-device-treat-essential-tremor.

  26. Fishman, P. S., and V. Frenkel. Focused ultrasound: An emerging therapeutic modality for neurologic disease. Neurotherapeutics. 14:393–404, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Focused Ultrasound Foundation. Blood-Brain Barrier Opening - Focused Ultrasound Foundation at https://www.fusfoundation.org/mechanisms-of-action/blood-brain-barrier-opening.

  28. Focused Ultrasound Foundation. First Preclinical Study - Focused Ultrasound Foundation at https://www.fusfoundation.org/timeline-of-focused-ultrasound/first-preclinical-study.

  29. Focused Ultrasound Foundation. First Cancer Application - Focused Ultrasound Foundation at https://www.fusfoundation.org/the-technology/timeline-of-focused-ultrasound?view=article&id=2274:first-cancer-application&catid=135:timeline.

  30. Focused Ultrasound Foundation. Neuropathic Pain - Focused Ultrasound Foundation at https://www.fusfoundation.org/diseases-and-conditions/neurological/neuropathic-pain

  31. Focused Ultrasound Foundation. Clinical Trial to Disrupt the Blood-brain Barrier for Brain Tumor Treatment Launched at University of Maryland - Focused Ultrasound Foundation at https://www.fusfoundation.org/news/clinical-trial-to-disrupt-the-blood-brain-barrier-for-brain-tumor-treatment-launched-at-university-of-maryland

  32. Foley, J. L., S. Vaezy, and L. A. Crum. Applications of high-intensity focused ultrasound in medicine: Spotlight on neurological applications. Appl. Acoust. 68:245–259, 2007.

    Article  Google Scholar 

  33. Frenkel, V., A. Etherington, M. Greene, J. Quijano, J. Xie, F. Hunter, S. Dromi, and K. C. P. Li. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: Investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad. Radiol. 13:469–479, 2006.

    Article  PubMed  Google Scholar 

  34. Fry, F. J., H. W. Ades, and W. J. Fry. Production of reversible changes in the central nervous system by ultrasound. Science. 127:83–84, 1958.

    Article  CAS  PubMed  Google Scholar 

  35. Fry, W. J., and F. J. Fry. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans. Med. Electron. 7:166–181, 1960.

    Article  PubMed  Google Scholar 

  36. Glybochko, P. V., A. V. Amosov, G. E. Krupinov, N. V. Petrovskii, and I. S. Lumpov. Hemiablation of localized prostate cancer by high-intensity focused ultrasound: A series of 35 cases. Oncology (Switzerland). 97:44–48, 2019.

    Google Scholar 

  37. Gong, C., B. Yang, Y. Shi, Z. Liu, L. Wan, H. Zhang, D. Jiang, and L. Zhang. Factors influencing the ablative efficiency of high intensity focused ultrasound (HIFU) treatment for adenomyosis: A retrospective study. Int. J. Hyperthermia. 32:496–503, 2016.

    Article  PubMed  Google Scholar 

  38. Guillaumier, S., M. Peters, M. Arya, N. Afzal, S. Charman, T. Dudderidge, F. Hosking-Jervis, R. G. Hindley, H. Lewi, N. McCartan, C. M. Moore, R. Nigam, C. Ogden, R. Persad, K. Shah, J. van der Meulen, J. Virdi, M. Winkler, M. Emberton, and H. U. Ahmed. A multicentre study of 5-year outcomes following focal therapy in treating clinically significant nonmetastatic prostate cancer. Eur. Urol. 74:422–429, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harary, M., D. J. Segar, M. T. Hayes, and G. R. Cosgrove. Unilateral thalamic deep brain stimulation versus focused ultrasound thalamotomy for essential tremor. World Neurosurg. 126:e144–e152, 2019.

    Article  PubMed  Google Scholar 

  40. Harary, M., D. J. Segar, K. T. Huang, I. J. Tafel, P. A. Valdes, and G. R. Cosgrove. Focused ultrasound in neurosurgery: A historical perspective. Neurosurg. Focus. 44:E2, 2018.

    Article  PubMed  Google Scholar 

  41. Hosseini, S. H. R., X. Zheng, and S. Vaezy. Effects of gas pockets on high-intensity focused ultrasound field. IEEE Trans. Ultrasonics Ferroelectr. Frequency Control. 58:1203–1210, 2011.

    Article  Google Scholar 

  42. Hynynen, K., N. McDannold, N. Vykhodtseva, and F. A. Jolesz. Non-invasive opening of BBB by focused ultrasound. Acta Neurochirurgica Supplementum. 86:555–558, 2003.

    CAS  Google Scholar 

  43. Ito, H., K. Yamamoto, S. Fukutake, T. Odo, and T. Kamei. Two-year follow-up results of magnetic resonance imaging-guided focused ultrasound unilateral thalamotomy for medication-refractory essential tremor. Internal Med. 59:2481–2483, 2020.

    Article  CAS  Google Scholar 

  44. Jagannathan, J., N. K. Sanghvi, L. A. Crum, C.-P. Yen, R. Medel, A. S. Dumont, J. P. Sheehan, L. Steiner, F. Jolesz, and N. F. Kassell. High intensity focused ultrasound surgery (HIFU) of the brain: A historical perspective, with modern applications. Neurosurgery. 64:201–211, 2009.

    Article  PubMed  Google Scholar 

  45. Jeanmonod, D., B. Werner, A. Morel, L. Michels, E. Zadicario, G. Schiff, and E. Martin. Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg. Focus. 32:E1, 2012.

    Article  PubMed  Google Scholar 

  46. Jenne, J. W., T. Preusser, and M. Günther. High-intensity focused ultrasound: Principles, therapy guidance, simulations and applications. Z. Med. Phys. 22:311–322, 2012.

    Article  PubMed  Google Scholar 

  47. Khirallah, J., R. Schmieley, E. Demirel, T. U. Rehman, J. Howell, Y. Y. Durmaz, and E. Vlaisavljevich. Nanoparticle-mediated histotripsy (NMH) using perfluorohexane “nanocones. Phys. Med. Biol. 64:125018, 2019.

    Article  CAS  PubMed  Google Scholar 

  48. Knuttel, F. M., L. Waaijer, L. G. Merckel, M. A. A. J. van den Bosch, A. J. Witkamp, R. Deckers, and P. J. van Diest. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation. Histopathology. 69:250–259, 2016.

    Article  PubMed  Google Scholar 

  49. Lee, S., L. Al-Kaabi, A. Mawart, A. Khandoker, H. Alsafar, H. F. Jelinek, K. Khalaf, J. H. Park, and Y. C. Kim. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction. J. Drug Target. 26:172–181, 2018.

    Article  CAS  PubMed  Google Scholar 

  50. Levi, V., R. Eleopra, A. Franzini, and L. Romito. Is Deep Brain Stimulation still an option for tremor recurrence after Focused Ultrasound thalamotomy? A case report. J. Clin. Neurosci. 68:344–346, 2019.

    Article  PubMed  Google Scholar 

  51. Li, W., Z. Jiang, X. Deng, and D. Xu. Long-term follow-up outcome and reintervention analysis of ultrasound-guided high intensity focused ultrasound treatment for uterine fibroids. Int. J. Hyperthermia. 37:1046–1051, 2020.

    Article  PubMed  Google Scholar 

  52. Liang, X., J. Gao, L. Jiang, J. Luo, L. Jing, X. Li, Y. Jin, and Z. Dai. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano. 9:1280–1293, 2015.

    Article  CAS  PubMed  Google Scholar 

  53. Luo, Z., K. Jin, Q. Pang, S. Shen, Z. Yan, T. Jiang, X. Zhu, L. Yu, Z. Pang, and X. Jiang. On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl. Mater. Interfaces. 9:31612–31625, 2017.

    Article  CAS  PubMed  Google Scholar 

  54. Lynn, J. G., R. L. Zwemer, A. J. Chick, and A. E. Miller. A new method for the generation and use of focused ultrasound in experimental biology. J. General Physiol. 26:179–193, 1942.

    Article  CAS  Google Scholar 

  55. Lyon, P. C., M. D. Gray, C. Mannaris, L. K. Folkes, M. Stratford, L. Campo, D. Y. F. Chung, S. Scott, M. Anderson, R. Goldin, R. Carlisle, F. Wu, M. R. Middleton, F. V. Gleeson, and C. C. Coussios. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol. 19:1027–1039, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, Y., G. Hsu, and F. Zhang. The applicability and efficacy of magnetic resonance-guided high intensity focused ultrasound system in the treatment of primary trigeminal neuralgia. Med. Hypotheses. 139:109688, 2020.

    Article  PubMed  Google Scholar 

  57. Mainprize, T., N. Lipsman, Y. Huang, Y. Meng, A. Bethune, S. Ironside, C. Heyn, R. Alkins, M. Trudeau, A. Sahgal, J. Perry, and K. Hynynen. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: A clinical safety and feasibility study. Sci. Rep. 9:321, 2019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Maloney, E., T. Khokhlova, V. G. Pillarisetty, G. R. Schade, E. A. Repasky, Y. N. Wang, L. Giuliani, M. Primavera, and J. H. Hwang. Focused ultrasound for immuno-adjuvant treatment of pancreatic cancer: An emerging clinical paradigm in the era of personalized oncotherapy. Int. Rev. Immunol. 36(6):338–351, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marques, A. L. S., M. P. Andres, R. M. Kho, and M. S. Abrão. Is high-intensity focused ultrasound effective for the treatment of adenomyosis? A systematic review and meta-analysis. JMIG. 2020. https://doi.org/10.1016/j.jmig.2019.07.029.

    Article  Google Scholar 

  60. Marsh, E. E., A. Al-Hendy, D. Kappus, A. Galitsky, E. A. Stewart, and M. Kerolous. Burden, prevalence, and treatment of uterine fibroids: A survey of U.S. Women. J. Women’s Health. 27:1359–1367, 2018.

    Article  Google Scholar 

  61. Mayo Clinic. Peripheral neuropathy - Symptoms and causes - Mayo Clinic at https://www.mayoclinic.org/diseases-conditions/peripheral-neuropathy/symptoms-causes/syc-20352061

  62. McClure, A. Using high-intensity focused ultrasound as a means to provide targeted drug delivery. J. Diagn. Med. Sonogr. 32:343–350, 2016.

    Article  Google Scholar 

  63. McRury, I. D., D. Panescu, M. A. Mitchell, and D. E. Haines. Nonuniform heating during radiofrequency catheter ablation with long electrodes: Monitoring the edge effect. Circulation. 96:4057–4064, 1997.

    Article  CAS  PubMed  Google Scholar 

  64. Medical Associates of Northwest Arkansas. Different Uses for Ultrasound - Medical Associates of Northwest Arkansas at https://www.mana.md/different-uses-for-ultrasound/

  65. Moosavi Nejad, S., H. Takahashi, H. Hosseini, A. Watanabe, H. Endo, K. Narihira, T. Kikuta, and K. Tachibana. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrasonics Sonochem. 32:95–101, 2016.

    Article  CAS  Google Scholar 

  66. Muratore, R. A history of the sonocare CST-100: The first FDA-approved HIFU device. AIP Conf. Proc. 829:508, 2006.

    Article  Google Scholar 

  67. Mylonas, N. Mylonas, N. Development of positioning devices for MRI-guided high intensity focused ultrasound (HIFU) for abdominal, thyroid and brain, tumours (Unpublished Doctoral thesis, City University London), 2012.

  68. Nakamura, K., S. Baba, S. Saito, M. Tachibana, and M. Murai. High-intensity focused ultrasound energy for benign prostatic hyperplasia: Clinical response at 6 months to treatment using Sonablate 200®. J. Endourol. 11:197–201, 1997.

    Article  CAS  PubMed  Google Scholar 

  69. National Cancer Institute. Common Cancer Types - National Cancer Institute at https://www.cancer.gov/types/common-cancers

  70. Neuromodulation. About Neuromodulation at https://www.neuromodulation.com/about-neuromodulation

  71. Osminkina, L. A., A. L. Nikolaev, A. P. Sviridov, N. V. Andronova, K. P. Tamarov, M. B. Gongalsky, A. A. Kudryavtsev, H. M. Treshalina, and V. Y. Timoshenko. Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer. Microporous Mesoporous Mater. 210:169–175, 2015.

    Article  CAS  Google Scholar 

  72. Park, Y. S., N. Y. Jung, Y. C. Na, and J. W. Chang. Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Movement Disord. 34:727–734, 2019.

    Article  PubMed  Google Scholar 

  73. Payne, A., U. Vyas, A. Blankespoor, D. Christensen, and R. Roemer. Minimisation of HIFU pulse heating and interpulse cooling times. Int. J. Hyperthermia. 26:198–208, 2010.

    Article  PubMed  Google Scholar 

  74. Peek, M. C. L., and M. Douek. Ablative techniques for the treatment of benign and malignant breast tumours. J. Ther. Ultrasound. 5:18, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  75. PubMed. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MRgHIFU) Treatment of Symptomatic Uterine Fibroids: An Evidence-Based Analysis - PubMed at https://pubmed.ncbi.nlm.nih.gov/26357530/

  76. Radiopaedia. History of ultrasound in medicine | Radiology Reference Article | Radiopaedia.org at https://radiopaedia.org/articles/history-of-ultrasound-in-medicine?lang=us

  77. Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 10:63–89, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rojas, K., and A. Stuckey. Breast cancer epidemiology and risk factors. Clin. Obstetr. Gynecol. 59:651–672, 2016.

    Article  Google Scholar 

  79. Sabry, M., and A. Al-Hendy. Medical treatment of uterine leiomyoma. Reproud. Sci. 19(4):339–353, 2012.

    Article  CAS  Google Scholar 

  80. Saluja, S., D. A. N. Barbosa, J. J. Parker, Y. Huang, M. R. Jensen, V. Ngo, V. E. Santini, K. B. Pauly, P. Ghanouni, J. A. McNab, and C. H. Halpern. Case report on deep brain stimulation rescue after suboptimal MR-guided focused ultrasound thalamotomy for essential tremor: A tractography-based investigation. Front. Hum. Neurosci. 14:191, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sanguinetti, J. L., S. Hameroff, E. E. Smith, T. Sato, C. M. W. Daft, W. J. Tyler, and J. J. B. Allen. Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front. Hum. Neurosci. 14:52, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sattiraju, A., Y. Sun, K. K. Solingapuram Sai, K. C. P. Li, and A. Mintz. Maximizing local access to therapeutic deliveries in glioblastoma. Part IV: Image-guided, remote-controlled opening of the blood–brain barrier for systemic brain tumor therapy. Glioblastoma. 2017. https://doi.org/10.15586/codon.glioblastoma.2017.ch20.

    Article  Google Scholar 

  83. Sazgarnia, A., A. Shanei, N. T. Meibodi, H. Eshghi, and H. Nassirli. A novel nanosonosensitizer for sonodynamic therapy: In vivo study on a colon tumor model. J. Ultrasound Med. 30:1321–1329, 2011.

    Article  PubMed  Google Scholar 

  84. Scipione, R., M. Anzidei, A. Bazzocchi, C. Gagliardo, C. Catalano, and A. Napoli. HIFU for bone metastases and other musculoskeletal applications. Semin. Intervent. Radiol. 35:261–267, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shui, L., S. Mao, Q. Wu, G. Huang, J. Wang, R. Zhang, K. Li, J. He, and L. Zhang. High-intensity focused ultrasound (HIFU) for adenomyosis: Two-year follow-up results. Ultrasonics Sonochem. 27:677–681, 2015.

    Article  CAS  Google Scholar 

  86. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2020. CA: A Cancer J. Clin. 70:7–30, 2020.

    Google Scholar 

  87. Staruch, R. M., K. Hynynen, and R. Chopra. Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: Therapeutic effect in rabbit Vx2 tumours. Int. J. Hyperthermia. 31:118–133, 2015.

    Article  CAS  PubMed  Google Scholar 

  88. Stewart, H. F., M. H. Repacholi, and D. A. Benwell. Ultrasound Therapy. In: Essentials of Medical Ultrasound. Totowa, NJ: Humana Press, pp. 181–213, 1982. https://doi.org/10.1007/978-1-4612-5805-6_6.

    Book  Google Scholar 

  89. Sundaram, K. M., S. S. Chang, D. F. Penson, and S. Arora. Therapeutic ultrasound and prostate cancer. Semin. Intervent. Radiol. 34:187–200, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Taran, F. A., E. A. Stewart, and S. Brucker. Adenomyosis: Epidemiology, risk factors, clinical phenotype and surgical and interventional alternatives to hysterectomy. Geburtshilfe Frauenheilkunde. 73:924–931, 2013.

    Article  CAS  Google Scholar 

  91. ter Haar, G., and C. Coussios. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperthermia. 23:89–104, 2007.

    Article  PubMed  Google Scholar 

  92. ter Haar, G. R., and D. Robertson. Tissue destruction with focused ultrasound in vivo. Eur. Urol. 23:8–11, 1993.

    Article  PubMed  Google Scholar 

  93. Thakur, K. T., E. Albanese, P. Giannakopoulos, N. Jette, M. Linde, M. J. Prince, T. J. Steiner, and T. Dua, et al. Neurological disorders. In: Disease Control Priorities: Mental, Neurological, and Substance Use Disorders, Vol. 4, edited by V. Patel, et al. Washington: The World Bank, 2016, pp. 87–107. https://doi.org/10.1596/978-1-4648-0426-7_ch5.

    Chapter  Google Scholar 

  94. Treat, L. H., N. McDannold, Y. Zhang, N. Vykhodtseva, and K. Hynynen. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med. Biol. 38:1716–1725, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  95. UCSFRadiology. High-Intensity Focused Ultrasound (HIFU) | UCSF Radiology at https://radiology.ucsf.edu/patient-care/services/high-intensity-focused-ultrasound-hifu.

  96. von Hardenberg, J., N. Westhoff, D. Baumunk, D. Hausmann, T. Martini, A. Marx, S. Porubsky, M. Schostak, M. S. Michel, and M. Ritter. Prostate cancer treatment by the latest focal HIFU device with MRI/TRUS-fusion control biopsies: A prospective evaluation. Urologic Oncol.: Semin. Original Investig. 36:401.e1-401.e9, 2018.

    Article  Google Scholar 

  97. Wang, Y., X. Liu, W. Wang, J. Tang, and L. Song. Long-term clinical outcomes of US-guided high-intensity focused ultrasound ablation for symptomatic submucosal fibroids: a retrospective comparison with uterus-sparing surgery. Acad. Radiol. 2020. https://doi.org/10.1016/j.acra.2020.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang, Z., H. Sun, and J. Yakisich. Overcoming the blood-brain barrier for chemotherapy: Limitations, challenges and rising problems. Anti-Cancer Agents Med. Chem. 14:1085–1093, 2014.

    Article  CAS  Google Scholar 

  99. Wang, Z. B., F. Wu, Z. L. Wang, Z. Zhang, J. Z. Zou, C. Liu, Y. G. Liu, X. Cheng, Y. H. Du, Z. C. He, M. L. Gu, Z. G. Wang, and R. Feng. Targeted damage effects of high intensity focused ultrasound (HIFU) on liver tissues of Guizhou Province miniswine. Ultrasonics Sonochem. 4:181–182, 1997.

    Article  CAS  Google Scholar 

  100. Wu, F., G. ter Haar, and W. R. Chen. High-intensity focused ultrasound ablation of breast cancer. Expert Rev. Anticancer Therapy. 7:823–831, 2007.

    Article  Google Scholar 

  101. Wu, F., Z.-B. Wang, Y.-D. Cao, X.-Q. Zhu, H. Zhu, W.-Z. Chen, and J.-Z. Zou. “‘Wide Local Ablation’” of localized breast cancer using high intensity focused ultrasound. J. Surg. Oncol. 96:130–136, 2007.

    Article  PubMed  Google Scholar 

  102. Wu, F., Z. B. Wang, Y. De Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br. J. Cancer. 89:2227–2233, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xin, Z., G. Lin, H. Lei, T. F. Lue, and Y. Guo. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology. Transl. Androl. Urol. 5:255–266, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yiannakou, M., G. Menikou, C. Yiallouras, and C. Damianou. MRI-guided coupling for a focused ultrasound system using a top-to-bottom propagation. J. Ther. Ultrasound. 5:6, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  105. You, Y., Z. Wang, H. Ran, Y. Zheng, D. Wang, J. Xu, Z. Wang, Y. Chen, and P. Li. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale. 8:4324–4339, 2016.

    Article  CAS  PubMed  Google Scholar 

  106. You, D. G., H. Y. Yoon, S. Jeon, W. Um, S. Son, J. H. Park, I. C. Kwon, and K. Kim. Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound. Nano Convergence. 4:30, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zhang, L., and Z. B. Wang. High-intensity focused ultrasound tumor ablation: Review of ten years of clinical experience. Front Med China. 4(3):294–302, 2010.

    Article  PubMed  Google Scholar 

  108. Zhang, Y., L. Yong, Y. Luo, X. Ding, D. Xu, X. Gao, S. Yan, Q. Wang, J. Luo, D. Pu, and J. Zou. Enhancement of HIFU ablation by sonosensitizer-loading liquid fluorocarbon nanoparticles with pre-targeting in a mouse model. Sci Rep. 9:1, 2019.

    Google Scholar 

  109. Zhou, Y.-F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2:8, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the NIH for support (R01CA228133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Tyler.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachu, V.S., Kedda, J., Suk, I. et al. High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng 49, 1975–1991 (2021). https://doi.org/10.1007/s10439-021-02833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02833-9

Keywords

Navigation