Skip to main content
Log in

The evolution of mapping and ablation techniques in the treatment of atrial tachycardias occurring after atrial fibrillation ablation

  • MULTIMEDIA REPORT
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

A possible consequence of atrial fibrillation (AF) ablation is the occurrence of organized atrial tachycardias (ATs). ATs after AF ablation (ATAAF) may be more symptomatic than AF itself, thus necessitating catheter ablation. We evaluated the prognostic significance of clinical and invasive characteristics for long-term sinus rhythm (SR) maintenance following ATAAF ablation and assessed the effect of technological developments on these results.

Methods and results

Fifty-six consecutive patients with symptomatic ATAAF participated in the study and 114 ATAAF were revealed (2.04 ± 0.93 per patient). Sixty-eight ATAAF (60%) were macroreentrant and 33 (29%) were microreentrant circuits, while 13 (11%) were focal automatic tachycardias. The mean follow-up was 40 ± 18 months with 34 (61%) patients maintaining SR. Treatment with contact force (CF) catheters and EnSite AutoMap module (n = 11) showed significantly better AT/AF free rates at 1-year follow-up (10/11, 91%) compared with treatment using CF catheters but not AutoMap module (n = 13) (8/13, 62%) and treatment with use of neither of these modalities (n = 32) (16/32, 50%). Among patients with macroreentrant circuits around the mitral annulus or left atrial roof (n = 38), the group treated with complete linear lesions in anatomical isthmuses (n = 25) showed significantly better SR maintenance (19/25, 76%) compared with patients (n = 13) treated by empirical ablation in critical functional areas (6/13, 46%).

Conclusions

Technology advancement contributes substantially to long-term success in SR maintenance, by achieving detailed mapping and more effective ablation of ATAAF. The targeting of macroreentrant circuits by creating anatomical linear lesions appears to provide better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gerstenfeld EP, Callans DJ, Dixit S, Russo AM, Nayak H, Lin D, et al. Mechanisms of organized left atrial tachycardias occurring after pulmonary vein isolation. Circulation. 2004;110:1351–7.

    Article  Google Scholar 

  2. Chugh A, Oral H, Lemola K, Hall B, Cheung P, Good E, et al. Prevalence, mechanisms, and clinical significance of macroreentrant atrial tachycardia during and following left atrial ablation for atrial fibrillation. Heart Rhythm. 2005;2:464–71.

    Article  Google Scholar 

  3. Deisenhofer I, Estner H, Zrenner B, Schreieck J, Weyerbrock S, Hessling G, et al. Left atrial tachycardia after circumferential pulmonary vein ablation for atrial fibrillation: incidence, electrophysiological characteristics, and results of radiofrequency ablation. Europace. 2006;8:573–82.

    Article  Google Scholar 

  4. Sawhney N, Anousheh R, Chen W, et al. Circumferential pulmonary vein ablation with additional linear ablation results in an increased incidence of left atrial flutter compared with segmental pulmonary vein isolation as an initial approach to ablation of paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:243–8.

    Article  Google Scholar 

  5. Rostock T, Drewitz I, Steven D, et al. Characterization, mapping, and catheter ablation of recurrent atrial tachycardias after stepwise ablation of long-lasting persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:160–9.

    Article  Google Scholar 

  6. Wasmer K, Mönnig G, Bittner A, Dechering D, Zellerhoff S, Milberg P, et al. Incidence, characteristics, and outcome of left atrial tachycardias after circumferential antral ablation of atrial fibrillation. Heart Rhythm. 2012;9:1660–6.

    Article  Google Scholar 

  7. Gerstenfeld EP, Marchlinski FE. Mapping and ablation of left atrial tachycardias occurring after atrial fibrillation ablation. Heart Rhythm. 2007;4:S65–72.

    Article  Google Scholar 

  8. Morady F, Oral H, Chugh A. Diagnosis and ablation of atypical atrial tachycardia and flutter complicating atrial fibrillation ablation. Heart Rhythm. 2009;6:S29–32.

    Article  Google Scholar 

  9. Sághy L, Tutuianu C, Szilágyi J. Atrial tachycardias following atrial fibrillation ablation. CurrCardiolRev. 2015;11:149–56.

    Google Scholar 

  10. Ptaszek L, Moon B, Rozen G, et al. Novel automated point collection software facilitates rapid, high-density electroanatomical mapping with multiple catheter types. J Cardiovasc Electrophysiol. 2018;29:186–95.

    Article  Google Scholar 

  11. Bourier F, et al. New automatic mapping technology - accuracy and efficacy. Europace. 2017;19(Suppl 3):iii51 EHRA EUROPACE–CARDIOSTIM 2017 Scientific Sessions, June 18, 2017, Vienna, Austria. Abstract P316.

    Article  Google Scholar 

  12. Moltrasio M, et al. A new improved 3D mapping system for left atrial ablation procedures: initial evaluation. Europace. 2017;19(Suppl 3):iii280 Presentation at EHRA EUROPACE –CARDIOSTIM 2017 Scientific Sessions, June 18, 2017, Vienna, Austria. Abstract P1413.

    Article  Google Scholar 

  13. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace. 2018;20(1):e1–e160. https://doi.org/10.1093/europace/eux274.

    Article  PubMed  Google Scholar 

  14. Ioannidis P, Zografos T, Vassilopoulos C, et al. Selective activation re-mapping reveals the mechanism in apparently unstable atrial tachycardias. J Atr Fibrillation. 2019;11:2152.

    Article  Google Scholar 

  15. West TC, Landa JF. Minimal mass required for induction of a sustained arrhythmia in isolated atrial segments. Am J Phys. 1962;202:232–6. https://doi.org/10.1152/ajplegacy.1962.202.2.232.

    Article  CAS  Google Scholar 

  16. Mamchur SE, Mamchur IN, Khomenko EA, Bokhan NS, Scherbinina DA. 'Electrical Exclusion' of a critical myocardial mass by extended pulmonary vein antrum isolation for persistent atrial fibrillation treatment. Interv Med Appl Sci. 2014;6(1):31–9. https://doi.org/10.1556/IMAS.6.2014.1.5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koyama T, Sekiguchi Y, Tada H, et al. Comparison of characteristics and significance of immediate versus early versus no recurrence of atrial fibrillation after catheter ablation. Am J Cardiol. 2009;103:1249–54.

    Article  Google Scholar 

  18. Liang JJ, Elafros MA, Chik WW, et al. Early recurrence of atrial arrhythmias following pulmonary vein antral isolation: timing and frequency of early recurrences predicts long-term ablation success. HeartRhythm. 2015;12:2461–8.

    Google Scholar 

  19. Chae S, Oral H, Good E, et al. Atrial tachycardia after circumferential pulmonary vein ablation of atrial fibrillation: mechanistic insights, results of catheter ablation, and risk factors for recurrence. J Am Coll Cardiol. 2007;50:1781–7.

    Article  Google Scholar 

  20. Chang SL, Tsao HM, Lin YJ, et al. Differentiating macroreentrant from focal atrial tachycardias occurred after circumferential pulmonary vein isolation. J Cardiovasc Electrophysiol. 2011;22:748–55.

    Article  Google Scholar 

  21. Yokokawa M, Latchamsetty R, Ghanbari H, Belardi D, Makkar A, Roberts B, et al. Characteristics of atrial tachycardia due to small vs large reentrant circuits after ablation of persistent atrial fibrillation. Heart Rhythm. 2013;10:469–76.

    Article  Google Scholar 

  22. Bun SS, Delassi T, Latcu DG, et al. A comparison between multipolar mapping and conventional mapping of atrial tachycardias in the context of atrial fibrillation ablation. ArchCardiovascDis. 2018;111:33–40.

    Google Scholar 

  23. Winkle R, Moskovitz R, Mead H, et al. Ablation of atypical atrial flutters using ultra high density-activation sequence mapping. J Interv Card Electrophysiol. 2017;48:177–84.

    Article  Google Scholar 

  24. Barbhaiya CR, Kumar S, Ng J, Tedrow U, Koplan B, John R, et al. Overdrive pacing from downstream sites on multielectrode catheters to rapidly detect fusion and to diagnose macroreentrant atrial arrhythmias. Circulation. 2014;129:2503–10.

    Article  Google Scholar 

  25. Takigawa M, Derval N, Frontera A, Martin R, Yamashita S, Cheniti G, et al. Revisiting anatomic macroreentrant tachycardia after atrial fibrillation ablation using ultrahigh-resolution mapping: implications for ablation. Heart Rhythm. 2018;15:326–33.

    Article  Google Scholar 

  26. Hayashi T, Fukamizu S, Mitsuhashi T, Kitamura T, Aoyama Y, Hojo R, et al. Peri-mitral atrial tachycardia using the Marshall bundle epicardial connections. JACC Clin Electrophysiol. 2016;2:27–35.

    Article  Google Scholar 

  27. Takigawa M, Derval N, Maury P, et al. Comprehensive multicenter study of the common isthmus in post-atrial fibrillation ablation multiple-loop atrial tachycardia. Circ Arrhythm Electrophysiol. 2018;11(6):e006019.

    Article  Google Scholar 

  28. Kitamura T, Martin R, Denis A, et al. Characteristics of single-loop macroreentrant biatrial tachycardia diagnosed by ultrahigh-resolution mapping system. Circ Arrhythm Electrophysiol. 2018 Feb;11(2):e005558.

    Article  Google Scholar 

  29. Frontera A, Mahajan R, Dallet C, Vlachos K, Kitamura T, Takigawa M, et al. Characterizing localized reentry with high-resolution mapping: evidence for multiple slow conducting isthmuses within the circuit. Heart Rhythm. 2019;16:679–85.

    Article  Google Scholar 

  30. Yamashita S, Hooks D, Shah A, et al. Atrial tachycardias: cause or effect with ablation of persistent atrial fibrillation? J Cardiovasc Electrophysiol. 2018;29:274–83.

    Article  Google Scholar 

  31. Sundaram S, Choe W, Jordan R, et al. Catheter ablation of atypical atrial flutter: a novel 3D anatomic mapping approach to quickly localize and terminate atypical atrial flutter. J Interv Card Electrophysiol. 2017;49:307–18.

    Article  Google Scholar 

  32. Hermida Α, Kubala M, Traullé S, et al. Prevalence and predictive factors of left atrial tachycardia occurring after second-generation cryoballoon ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29:46–54.

    Article  Google Scholar 

  33. Bai R, Di Biase L, Mohanty P, et al. Ablation of perimitral flutter following catheter ablation of atrial fibrillation: impact on outcomes from a randomized study (PROPOSE). J Cardiovasc Electrophysiol. 2012;23:137–44.

    Article  Google Scholar 

  34. Ullah W, McLean A, Tayebjee MH, Gupta D, Ginks MR, Haywood GA, et al. Randomized trial comparing pulmonary vein isolation using the SmartTouch catheter with or without real-time contact force data. Heart Rhythm. 2016;13:1761–7.

    Article  Google Scholar 

  35. Conti S, Weerasooriya R, Novak P, Champagne J, Lim HE, Macle L, et al. Contact force sensing for ablation of persistent atrial fibrillation: a randomized, multicenter trial. Heart Rhythm. 2018;15:201–8.

    Article  Google Scholar 

  36. Virk SA, Ariyaratnam J, Bennett RG, Kumar S. Updated systematic review and meta-analysis of the impact of contact force sensing on the safety and efficacy of atrial fibrillation ablation: discrepancy between observational studies and randomized control trial data. Europace. 2019;21:239–49.

    Article  Google Scholar 

  37. Laţcu DG, Bun SS, Viera F, et al. Selection of critical isthmus in scar-related atrial tachycardia using a new automated ultrahigh resolution mapping system. Circ Arrhythm Electrophysiol. 2017;10:e004510.

    Article  Google Scholar 

  38. Kautzner J, Neuzil P, Lambert H, Peichl P, Petru J, Cihak R, et al. EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace. 2015;17:1229–35.

    Article  Google Scholar 

  39. Wójcik M, Berkowitsch A, Zaltsberg S, Hamm CW, Pitschner HF, Kuniss M, et al. Predictors of early and late left atrial tachycardia and left atrial flutter after catheter ablation of atrial fibrillation: long-term follow-up. Cardiol J. 2015;22:557–66.

    Article  Google Scholar 

  40. Kawaji T, Shizuta S, Yamagami S, Aizawa T, Komasa A, Yoshizawa T, et al. Clinical utility of intravenous Nifekalant injection during radiofrequency catheter ablation for persistent atrial fibrillation. J Atr Fibrillation. 2018;11:1839.

    Article  Google Scholar 

  41. Singh SM, D’ Avila A, Kim SJ, et al. Intraprocedural use of ibutilide to organize and guide ablation of complex fractionated atrial electrograms: preliminary assessment of a modified step-wise approach to ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2010;21:608–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ioannidis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Video 1

(MPG 859 kb)

Video 2

(MPG 718 kb)

Video 3

(MPG 1586 kb)

Video 4

(MPG 1625 kb)

Video 5

(MPG 2187 kb)

Video 6

(MPG 1418 kb)

Video 7

(MPG 3231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioannidis, P., Zografos, T., Vassilopoulos, C. et al. The evolution of mapping and ablation techniques in the treatment of atrial tachycardias occurring after atrial fibrillation ablation. J Interv Card Electrophysiol 60, 493–511 (2021). https://doi.org/10.1007/s10840-020-00759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-020-00759-1

Keywords

Navigation