Skip to main content
Log in

Point-by-point versus multisite electrode mapping in VT ablation: does freedom from VT recurrences depend on mapping catheter? An observational study

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted with the purpose of determining whether or not the potential technical advantages of multi-electrode mapping catheters in catheter ablation (CA) of ventricular tachycardia (VT) result in any relevant clinical benefit for VT patients.

Methods

A single-center VT study, having taken place from 2012 to 2014 using a standard 3.5-mm catheter (Thermocool SF® group 1) and from 2014 to 2016 using a 1-mm multi-electrode-mapping catheter (PentaRay® group 2), was conducted. The endpoint was the complete elimination of late potentials (LPs), local abnormal ventricular activities (LAVA), and VT non-inducibility. Follow-up consisted of device interrogation to monitor for VT recurrence.

Results

Out of 74 VT patients aged 64.5 ± 12.0 years (66 male [89.2%], 56 with ICM [75.7%], and 18 with NICM [24.3%)]), 48 patients (64.9%) were investigated in group 1 and 26 (35.1%) in group 2. Using the multi-point acquisition approach, a tendency to require less mapping time (group 1 65.2 ± 37.6 min, group 2 55.6 ± 34.4 min, p ns) was determined. During 12-month follow-up, 57 patients had freedom from VT recurrences (79.2%). The result was insignificant between the groups (38 patients (79.2%) in group 1 and 19 patients (73.1%) in group 2).

Conclusions

In a single-center observational study, both conventional and high-density mapping approaches in VT patients are comparable in terms of procedure duration and outcome. Mapping time when using a multi-electrode catheter seems to have the tendency of being shorter. We should be encouraged to recruit more patients comparing the benefit of different catheter types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AT:

ablation time

CA:

catheter ablation

CABG:

coronary artery bypass graft

CRT:

cardiac resynchronization therapy

EAM:

electroanatomical mapping

ECGs:

electrocardiograms

EF:

ejection fraction

FT:

fluoroscopy time

ICD:

internal cardioverter defibrillator

ICM:

ischemic cardiomyopathy

LPs:

late potentials

LAVA:

local abnormal ventricular activity

LV:

left ventricle

MEM:

multi-electrode-mapping

MT:

mapping time

NICM:

non-ischemic cardiomyopathy

NYHA:

New York Heart Association

PBP:

point-by-point

PD:

procedure duration

PVS:

programmed ventricular stimulation

RV:

right ventricle

SHD:

structural heart disease

SR:

sinus rhythm

VT:

ventricular tachycardia

3D–EAM:

three-dimensional electronical mapping

References

  1. Aliot EM, Stevenson WG, Almendral-Garrote JM, Bogun F, Calkins CH, Delacretaz E, Della Bella P, Hindricks G, Jaïs P, Josephson ME, Kautzner J, Kay GN, Kuck KH, Lerman BB, Marchlinski F, Reddy V, Schalij MJ, Schilling R, Soejima K, Wilber D, European Heart Rhythm Association (EHRA) Registered Branch of the European Society of Cardiology (ESC),Heart Rhythm Society (HRS), American College of Cardiology (ACC), American Heart Association (AHA) EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European heart rhythm association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart Rhythm 2009;6:886–933, 6, https://doi.org/10.1016/j.hrthm.2009.04.030.

  2. Haris M. Haqqani, Francis E. Marchlinski, Electrophysiologic substrate underlying postinfarction ventricular tachycardia: characterization and role in catheter ablation. Heart Rhythm, 2009Vol 6, No 8S, August Supplement .

  3. Stevenson WG, Soejima K. Catheter ablation for ventricular tachycardia. Circulation. 2007;115(21):2750–60. https://doi.org/10.1161/CIRCULATIONAHA.106.655720.

    Article  PubMed  Google Scholar 

  4. Kottkamp H, Wetzel U, Schirdewahn P, Dorszewski A, Gerds-Li JH, Carbucicchio C, et al. Catheter ablation of ventricular tachycardia in remote myocardial infarction: substrate description guiding placement of individual linear lesions targeting noninducibility. J Cardiovasc Electrophysiol. 2003;14(7):675–81. https://doi.org/10.1046/j.1540-8167.2003.02541.x.

  5. Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation. 2000;101(11):1288–96. https://doi.org/10.1161/01.CIR.101.11.1288.

    Article  CAS  PubMed  Google Scholar 

  6. Arenal A, del Castillo S, Gonzalez-Torrecilla E, Atienza F, Ortiz M, Jimenez J, et al. Tachycardia-related channel in the scar tissue in patients with sustained monomorphic ventricular tachycardias: influence of the voltage scar definition. Circulation. 2004;110(17):2568–74. https://doi.org/10.1161/01.CIR.0000145544.35565.47.

  7. Reddy VY, Neuzil P, Taborsky M, Ruskin JN. Short-term results of substrate mapping and radiofrequency ablation of ischemic ventricular tachycardia using a saline-irrigated catheter. J Am Coll Cardiol. 2003;41(12):2228–36. https://doi.org/10.1016/S0735-1097(03)00492-3.

    Article  PubMed  Google Scholar 

  8. Soejima K, Stevenson WG, Maisel WH, Sapp JL, Epstein LM. Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus. Circulation. 2002;106(13):1678–83. https://doi.org/10.1161/01.CIR.0000030187.39852.A7.

    Article  PubMed  Google Scholar 

  9. Soejima K, Suzuki M, Maisel WH, Brunckhorst CB, Delacretaz E, Blier L, et al. Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthmuses and sinus rhythm mapping. Circulation. 2001;104(6):664–9. https://doi.org/10.1161/hc3101.093764.

  10. Stevenson WG, Wilber DJ, Natale A, Jackman WM, Marchlinski FE, Talbert T, et al. Multicenter Thermocool VT Ablation Trial Investigators. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008;118(25):2773–82.

  11. Tung R, Vaseghi M, Frankel DS, Vergara P, di Biase L, Nagashima K, et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: an international VT ablation center collaborative group study FHRS. Heart Rhythm. 2015;12(9):1997–2007. https://doi.org/10.1016/j.hrthm.2015.05.036.

  12. Anter E, Tschabrunn CM, Buxton AE, Josephson ME. High-resolution mapping of Postinfarction reentrant ventricular tachycardia: electrophysiological characterization of the circuit. Circulation. 2016 Jul 26;134(4):314–27. https://doi.org/10.1161/CIRCULATIONAHA.116.021955.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tschabrunn CM, Roujol S, Dorman NC, Nezafat R, Josephson ME, Anter E. High-Resolution Mapping of Ventricular Scar: Comparison Between Single and Multielectrode Catheters. Circ Arrhythm Electrophysiol. 2016;9(6):e003841. https://doi.org/10.1161/CIRCEP.115.003841.

    Article  PubMed  Google Scholar 

  14. Yamashita S, Cochet H, Sacher F, et al. Impact of New Technologies and Approaches for Post-Myocardial Infarction Ventricular Tachycardia Ablation During Long-Term Follow-Up. Circ Arrhythm Electrophysiol. 2016;9(7):e003901.

    Article  PubMed  Google Scholar 

  15. Sosa E, Scanavacca M, d'Avila A, Pilleggi FA. New technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol. 1996;7(6):531–6. https://doi.org/10.1111/j.1540-8167.1996.tb00559.x.

    Article  CAS  PubMed  Google Scholar 

  16. Kuteszko R, Pytkowski M, Farkowski MM, et al. Utility of automated template matching for the interpretation of pace mapping in patients ablated due to outflow tract ventricular arrhythmias. Europace. 2015;17(9):1428–34. https://doi.org/10.1093/europace/euu392.

    Article  PubMed  Google Scholar 

  17. Cano O, Hutchinson M, Lin D, Garcia F, Zado E, Bala R, et al. Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy. J Am Coll Cardiol. 2009;54(9):799–808. https://doi.org/10.1016/j.jacc.2009.05.032.

  18. Tanner H, Hindricks G, Volkmer M, Furniss S, Kühlkamp V, Lacroix D, de Chillou C, Almendral J, Caponi D, Kuck KH, Kottkamp H. Catheter ablation of recurrent scar-related ventricular tachycardia using electroanatomical mapping and irrigated ablation technology: results of the prospective multicenter Euro-VT-study. J Cardiovasc Electrophysiol. 2010 21(1):47–53. https://doi.org/10.1111/j.1540-8167.2009.01563.x. Epub 2009 Jul 28.

  19. McPherson CA, Rosenfeld LE, Batsford WP. Day-to-day reproducibility of responses to right ventricular programmed electrical stimulation: implications for serial drug testing. Am J Cardiol. 1985;55(6):689–95. https://doi.org/10.1016/0002-9149(85)90138-9.

    Article  CAS  PubMed  Google Scholar 

  20. Acosta J, Penela D, Andreu D, Cabrera M, Carlosena A, Vassanelli F, et al. Multielectrode vs. point-by-point mapping for ventricular tachycardia substrate ablation: a randomized study. Europace. 2017;8:euw406. https://doi.org/10.1093/europace/euw406.

  21. Kapa S, Desjardins B, Callans DJ, Marchlinski FE, Dixit S. Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J Cardiovasc Electrophysiol201425(10):1044–-1052. https://doi.org/10.1111/jce.12452. Epub 2014 Jun 11.

  22. Anter E, Tschabrunn CM, Josephson ME. High-resolution mapping of scar-related atrial arrhythmias using smaller electrodes with closer interelectrode spacing. Circ Arrhythm Electrophysiol. 2015;8(3):537–45. https://doi.org/10.1161/CIRCEP.114.002737. Epub 2015 Mar 19

    Article  PubMed  Google Scholar 

  23. Spragg DD, Khurram I, Zimmerman SL, Yarmohammadi H, Barcelon B, Needleman M, et al. Initial experience with magnetic resonance imaging of atrial scar and co-registration with electroanatomic voltage mapping during atrial fibrillation: success and limitations. Heart Rhythm. 2012;9(12):2003–9. https://doi.org/10.1016/j.hrthm.2012.08.039.

  24. Squara F, Frankel DS, Schaller R, Kapa S, Chik WW, Callans DJ, et al. Voltage mapping for delineating inexcitable dense scar in patients undergoing atrial fibrillation ablation: a new end point for enhancing pulmonary vein isolation. Heart Rhythm. 2014;11(11):1904–11. https://doi.org/10.1016/j.hrthm.2014.07.027.

  25. Liang JJ, Elafros MA, Muser D, Pathak RK, Santangeli P, Supple GE, et al. Comparison of left atrial bipolar voltage and scar using multielectrode fast automated mapping versus point-by-point contact Electroanatomic mapping in patients with atrial fibrillation undergoing repeat ablation. J Cardiovasc Electrophysiol. 2017 Mar;28(3):280–8. https://doi.org/10.1111/jce.13151. Epub 2017 Jan 10

  26. Cassidy DM, Vassallo JA, Marchlinski FE, Buxton AE, Untereker WJ, Josephson ME. Endocardial mapping in humans in sinus rhythm with normal left ventricles: activation patterns and characteristics of electrograms. Circulation. 1984;70(1):37–42. https://doi.org/10.1161/01.CIR.70.1.37.

    Article  CAS  PubMed  Google Scholar 

  27. Hutchinson MD, Gerstenfeld EP, Desjardins B, Bala R, Riley MP, Garcia FC, et al. Endocardial unipolar voltagemapping to detect epicardial ventricular tachycardia substrate in patients with nonischemic left ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2011;4(1):49–55. https://doi.org/10.1161/CIRCEP.110.959957.

  28. Hsia HH, Callans DJ, Marchlinski FE. Characterization of endocardial electrophysiological substrate in patients with nonischemic cardiomyopathy and monomorphic ventricular tachycardia. Circulation. 2003;108(6):704–10. https://doi.org/10.1161/01.CIR.0000083725.72693.EA.

    Article  PubMed  Google Scholar 

  29. Marra MP, Leoni L, Bauce B, Corbetti F, Zorzi A, Migliore F, et al. Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy: comparison of 3D standard electroanatomical voltagemapping and contrast-enhanced cardiac magnetic resonance. Circ Arrhythm Electrophysiol. 2012;5(1):91–100. https://doi.org/10.1161/CIRCEP.111.964635.

  30. Deneke T, Muller KM, Lemke B, Lawo T, Calcum B, Helwing M, et al. Human histopathology of electroanatomic mapping after cooled-tip radiofrequency ablation to treat ventricular tachycardia in remote myocardial infarction. J Cardiovasc Electrophysiol. 2005;16(11):1246–51. https://doi.org/10.1111/j.1540-8167.2005.40826.x.

  31. Perin EC, Silva GV, Sarmento-Leite R, Sousa AL, Howell M, Muthupillai R, et al. Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation. 2002;106(8):957–61. https://doi.org/10.1161/01.CIR.0000026394.01888.18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Maagh.

Ethics declarations

The study was approved by the Institutional Committee on Human Research. All patients signed consent forms prior to the ablation procedure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maagh, P., Christoph, A., Müller, M.S. et al. Point-by-point versus multisite electrode mapping in VT ablation: does freedom from VT recurrences depend on mapping catheter? An observational study. J Interv Card Electrophysiol 51, 169–181 (2018). https://doi.org/10.1007/s10840-018-0311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-018-0311-9

Keywords

Navigation