Skip to main content
Log in

Porous tip contact force–sensing catheters for pulmonary vein isolation: performance in a clinical routine setting

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

In catheter ablation of atrial fibrillation (AF), contact force (CF)–sensing catheters with an irrigated tip are used to deliver radiofrequency (RF) energy to the tissue. The ThermoCool® Smarttouch™ Surroundflow catheter (STSF) integrates CF-sensing technology and a new porous tip for advanced external cooling. The aim was to evaluate the performance and safety of STSF in a clinical setting of pulmonary vein isolation (PVI) in comparison with standard contact force–sensing catheter (ST).

Methods

We assigned consecutive patients (n = 80, prospectively, open-label, non-randomized) with symptomatic AF to either PVI with STSF (n = 60) or ST (n = 20).

Results

Total ablation time to achieve PVI was significantly shorter in STSF compared to that in ST (STSF, 1556 ± 435 s vs. ST, 1922 ± 961 s; p = 0.045). Ablation time to achieve loss of pace capture of left pulmonary veins was shorter using STSF (left veins, 155 ± 140 s vs. 291 ± 188 s; p = 0.01; right veins, 208 ± 196 s vs. 369 ± 306 s; p = 0.09). Furthermore, administered irrigation fluid was significantly reduced in STSF (241.4 ± 79.6 ml vs. 540.3 ± 229.5 ml; p < 0.01). CF was lower during ablation of left pulmonary veins. One steam pop occurred in STSF, which did not lead to pericardial effusion (vs. no steam pop in ST). The Kaplan–Meier estimate 12-month AF recurrence was 34.3% and 37.7% (p = 0.8).

Conclusions

Integrating CF technology and the porous tip technology enables effective energy transfer to the tissue resulting in shorter ablation time and less irrigation fluid administration. In our cohort, PVI using the STSF was not associated with an increased complication rate or AF recurrence rate after 12-month follow-up when compared with the ST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14:e275–444. https://doi.org/10.1016/j.hrthm.2017.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sciarra L, Golia P, Natalizia A, de Ruvo E, Dottori S, Scarà A, et al. Which is the best catheter to perform atrial fibrillation ablation? A comparison between standard ThermoCool, SmartTouch, and Surround Flow catheters. J Interv Card Electrophysiol. 2014;39:193–200. https://doi.org/10.1007/s10840-014-9874-2.

    Article  PubMed  Google Scholar 

  3. Khan MN, Jaïs P, Cummings J, di Biase L, Sanders P, Martin DO, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med. 2008;359:1778–85. https://doi.org/10.1056/NEJMoa0708234.

    Article  CAS  PubMed  Google Scholar 

  4. Winterfield JR, Jensen J, Gilbert T, et al. Lesion size and safety comparison between the novel flex tip on the FlexAbility ablation catheter and the solid tips on the thermo cool and thermo cool SFl. J Cardiovasc Electrophysiol. 2016;27:102–9. https://doi.org/10.1111/jce.12835.

    Article  PubMed  Google Scholar 

  5. Park CI, Lehrmann H, Keyl C, et al. Enhanced efficiency of a novel porous tip irrigated RF ablation catheter for pulmonary vein isolation. J Cardiovasc Electrophysiol. 2013;24:1328–35. https://doi.org/10.1111/jce.12221.

    Article  PubMed  Google Scholar 

  6. Oza SR, Hunter TD, Biviano AB, et al. Acute safety of an open-irrigated ablation catheter with 56-hole porous tip for radiofrequency ablation of paroxysmal atrial fibrillation: analysis from 2 observational registry studies. J Cardiovasc Electrophysiol. 2014;25:852–8. https://doi.org/10.1111/jce.12403.

    Article  PubMed  Google Scholar 

  7. Lin H, Chen Y-H, Hou J-W, Lu ZY, Xiang Y, Li YG. Role of contact force-guided radiofrequency catheter ablation for treatment of atrial fibrillation: a systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2017;28:994–1005. https://doi.org/10.1111/jce.13264.

    Article  PubMed  Google Scholar 

  8. Itoh T, Kimura M, Tomita H, Sasaki S, Owada S, Horiuchi D, et al. Reduced residual conduction gaps and favourable outcome in contact force-guided circumferential pulmonary vein isolation. Europace. 2016;18:531–7. https://doi.org/10.1093/europace/euv206.

    Article  PubMed  Google Scholar 

  9. Andrade JG, Monir G, Pollak SJ, Khairy P, Dubuc M, Roy D, et al. Pulmonary vein isolation using “contact force” ablation: the effect on dormant conduction and long-term freedom from recurrent atrial fibrillation—a prospective study. Hear Rhythm. 2014;11:1919–24. https://doi.org/10.1016/j.hrthm.2014.07.033.

    Article  Google Scholar 

  10. Reddy VY, Dukkipati SR, Neuzil P, Natale A, Albenque JP, Kautzner J, et al. Randomized, controlled trial of the safety and effectiveness of a contact force-sensing irrigated catheter for ablation of paroxysmal atrial fibrillation: results of the TactiCath contact force ablation catheter study for atrial fibrillation (TOCCASTAR) S. Circulation. 2015;132:907–15. https://doi.org/10.1161/CIRCULATIONAHA.114.014092.

    Article  PubMed  Google Scholar 

  11. Natale A, Reddy VY, Monir G, Wilber DJ, Lindsay BD, McElderry HT, et al. Paroxysmal AF catheter ablation with a contact force sensing catheter: results of the prospective, multicenter SMART-AF trial. J Am Coll Cardiol. 2014;64:647–56. https://doi.org/10.1016/j.jacc.2014.04.072.

    Article  PubMed  Google Scholar 

  12. Kuck KH, Fürnkranz A, Chun KRJ, Metzner A, Ouyang F, Schlüter M, et al. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE and ICE trial. Eur Heart J. 2016;37:2858–65. https://doi.org/10.1093/eurheartj/ehw285.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417–27. https://doi.org/10.1056/NEJMoa1707855.

    Article  PubMed  Google Scholar 

  14. Tofield A, Heart Rhythm Society, Sessions AS, et al. The CABANA trial: a first glance at an important study. Eur Heart J. 2018;39:2767–79. https://doi.org/10.1093/eurheartj/ehy379.

    Article  CAS  PubMed  Google Scholar 

  15. Vogler J, Willems S, Sultan A, Schreiber D, Lüker J, Servatius H, et al. Pulmonary vein isolation versus defragmentation the CHASE-AF Clinical Trial. J Am Coll Cardiol. 2015;66:2743–52. https://doi.org/10.1016/j.jacc.2015.09.088.

    Article  PubMed  Google Scholar 

  16. Anter E, Contreras-Valdes FM, Shvilkin A, Tschabrunn CM, Josephson ME. Acute pulmonary vein reconnection is a predictor of atrial fibrillation recurrence following pulmonary vein isolation. J Interv Card Electrophysiol. 2014;39:225–32. https://doi.org/10.1007/s10840-013-9864-9.

    Article  PubMed  Google Scholar 

  17. Wasmer K, Dechering DG, Köbe J, Mönnig G, Pott C, Frommeyer G, et al. Pulmonary vein reconnection and arrhythmia progression after antral linear catheter ablation of paroxysmal and persistent atrial fibrillation. Clin Res Cardiol. 2016;105:738–43. https://doi.org/10.1007/s00392-016-0980-2.

    Article  PubMed  Google Scholar 

  18. Reddy VY, Pollak S, Lindsay BD, McElderry HT, Natale A, Kantipudi C, et al. Relationship between catheter stability and 12-month success after pulmonary vein isolation: A Subanalysis of the SMART-AF Trial. JACC Clin Electrophysiol. 2016;2:691–9. https://doi.org/10.1016/j.jacep.2016.07.014.

    Article  PubMed  Google Scholar 

  19. Ullah W, McLean A, Tayebjee MH, Gupta D, Ginks MR, Haywood GA, et al. Randomized trial comparing pulmonary vein isolation using the SmartTouch catheter with or without real-time contact force data. Hear Rhythm. 2016;13:1761–7. https://doi.org/10.1016/j.hrthm.2016.05.011.

    Article  Google Scholar 

  20. Bourier F, Gianni C, Dare M, et al. Fiberoptic contact-force sensing electrophysiological catheters: how precise is the technology? J Cardiovasc Electrophysiol. 2017;28:109–14. https://doi.org/10.1111/jce.13100.

    Article  PubMed  Google Scholar 

  21. Shah DC, Lambert H, Nakagawa H, et al. Area under the real-time contact force curve (force-time integral) predicts radiofrequency lesion size in an in vitro contractile model. J Cardiovasc Electrophysiol. 2010;21:1038–43. https://doi.org/10.1111/j.1540-8167.2010.01750.x.

    Article  PubMed  Google Scholar 

  22. Yokoyama K, Nakagawa H, Shah DC, Lambert H, Leo G, Aeby N, et al. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ Arrhythm Electrophysiol. 2008;1:354–62. https://doi.org/10.1161/CIRCEP.108.803650.

    Article  PubMed  Google Scholar 

  23. Haines DA. Determinants of lesion size during radiofrequency catheter ablation: the role of electrode tissue contact pressure and duration of energy delivery. J Cardiovasc Electrophysiol. 1991;2:509–15.

    Article  Google Scholar 

  24. Macle L, Jais P, Weerasooriya R, et al. Irrigated-tip catheter ablation of pulmonary veins for treatment of atrial fibrillation. J Cardiovasc Electrophysiol. 2002;13:1067–73.

    Article  Google Scholar 

  25. Marrouche NF, Dresing T, Cole C, Bash D, Saad E, Balaban K, et al. Circular mapping and ablation of the pulmonary vein for treatment of atrial fibrillation: Impact of different catheter technologies. J Am Coll Cardiol. 2002;40:464–74. https://doi.org/10.1016/S0735-1097(02)01972-1.

    Article  PubMed  Google Scholar 

  26. Theis C, Rostock T, Mollnau H, et al. The incidence of audible steam pops is increased and unpredictable with the ThermoCool® surround flow catheter during left atrial catheter ablation: a prospective observational study. J Cardiovasc Electrophysiol. 2015;26:956–62. https://doi.org/10.1111/jce.12721.

    Article  PubMed  Google Scholar 

  27. Maurer T, Rottner L, Makimoto H, Reissmann B, Heeger CH, Lemes C, et al. The best of two worlds? Pulmonary vein isolation using a novel radiofrequency ablation catheter incorporating contact force sensing technology and 56-hole porous tip irrigation. Clin Res Cardiol. 2018;107:1003–12. https://doi.org/10.1007/s00392-018-1270-y.

    Article  PubMed  Google Scholar 

  28. Chinitz LA, Melby DP, Marchlinski FE, Delaughter C, Fishel RS, Monir G, et al. Safety and efficiency of porous-tip contact-force catheter for drug-refractory symptomatic paroxysmal atrial fibrillation ablation: results from the SMART SF trial. EP Eur. 2017;20:1–9. https://doi.org/10.1093/europace/eux264.

    Article  Google Scholar 

  29. Gonna H, Domenichini G, Zuberi Z, Norman M, Kaba R, Grimster A, et al. Initial clinical results with the ThermoCool® SmartTouch® Surround Flow catheter. Europace. 2017;19:1317–21. https://doi.org/10.1093/europace/euw177.

    Article  PubMed  Google Scholar 

  30. Schaeffer B, Willems S, Sultan A, et al. Loss of pace capture on the ablation line during pulmonary vein isolation versus “dormant conduction”: is adenosine expendable? J Cardiovasc Electrophysiol. 2015;26:1075–80. https://doi.org/10.1111/jce.12759.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Plenge.

Ethics declarations

All patients provided written informed consent and local ethics committee approval was obtained.

Conflict of interest

Tobias Plenge: none to declare.

Jan-Hendrik van den Bruck: none to declare.

Jakob Lüker: none to declare.

Arian Sultan: none to declare.

Daniel Steven received lecturer fees during the conduct of this study from Biosense Webster and research grant support from Biosense Webster outside the submitted work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plenge, T., van den Bruck, JH., Lüker, J. et al. Porous tip contact force–sensing catheters for pulmonary vein isolation: performance in a clinical routine setting. J Interv Card Electrophysiol 57, 251–259 (2020). https://doi.org/10.1007/s10840-019-00591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-019-00591-2

Keywords

Navigation