Skip to main content
Log in

The effects of remodeling with heart failure on mode of initiation of ventricular fibrillation and its spatiotemporal organization

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

The effect of the heart failure substrate on the initiation of ventricular fibrillation (VF) and its resulting mechanism is not known. The objective of this study was to determine the effects of substrate on VF initiation and its spatiotemporal organization in the heart failure model.

Methods

Optical action potentials were recorded from LV wedge preparations either from structurally normal hearts (control, n = 11) or from congestive heart failure (CHF; n = 7), at the epicardial surface, endocardial surface which included a papillary muscle, and a transmural cross section. Action potential duration (APD80) was determined, and VF was initiated. A fast Fourier transform was calculated, and the dominant frequency (DF) was determined.

Results

The CHF group showed increased VF vulnerability (69 vs 26 %, p < 0.03), and every mapped surface showed an APD80 gradient which included islands of higher APDs on the transmural surface (M cells) which was not observed in controls. VF in the CHF group was characterized by stable, discrete, high-DF areas that correlated to either foci or spiral waves located on the transmural surface at the site of the papillary muscle. Overall, the top 10 % of DFs correlated to an APD of 101 ms while the bottom 10 % of DFs correlated to an APD of 126 ms (p < 0.01).

Conclusions

In the CHF model, APD gradients correlated with an increased vulnerability to VF, and the highest stable DFs were located on the transmural surface which was not seen in controls. This indicates that the CHF substrate creates unique APD and DF characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APD:

Action potential duration

BCL:

Basic cycle length

CHF:

Congestive heart failure

DF:

Dominant frequency

VF:

Ventricular fibrillation

References

  1. Everett, T. H., & Olgin, J. E. (2013). Ventricular arrhythmia in structurally remodeled hearts and potential role of myocardial fibrosis. In S. C. Dudley, A. A. Sovari, & A. G. Kocherile (Eds.), Ventricular arrhythmia from principles to patients (pp. 37–50). New York: Nova Science Publishers, Inc.

    Google Scholar 

  2. Anderson, M. E., & Hodgson-Zingman, D. M. (2009). Ventricular tachycardia in patients with heart failure. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology from cell to bedside (5th ed., pp. 707–716). Philadelphia: Saunders Elsevier.

    Google Scholar 

  3. Holzem, K. M., & Efimov, I. R. (2012). Arrhythmogenic remodelling of activation and repolarization in the failing human heart. Europace, 14(Suppl 5), v50–v57.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Choi, B. R., Liu, T., & Salama, G. (2001). The distribution of refractory periods influences the dynamics of ventricular fibrillation. Circulation Research, 88(5), E49–E58.

    Article  CAS  PubMed  Google Scholar 

  5. Laurita, K. R., Girouard, S. D., & Rosenbaum, D. S. (1996). Modulation of ventricular repolarization by a premature stimulus. Role of epicardial dispersion of repolarization kinetics demonstrated by optical mapping of the intact guinea pig heart. Circulation Research, 79(3), 493–503.

    Article  CAS  PubMed  Google Scholar 

  6. Akar, F. G., & Rosenbaum, D. S. (2003). Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circulation Research, 93(7), 638–645.

    Article  CAS  PubMed  Google Scholar 

  7. Poelzing, S., Akar, F. G., Baron, E., & Rosenbaum, D. S. (2004). Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. American Journal of Physiology. Heart and Circulatory Physiology, 286(5), H2001–H2009.

    Article  CAS  PubMed  Google Scholar 

  8. Yan, G. X., Shimizu, W., & Antzelevitch, C. (1998). Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation, 98(18), 1921–1927.

    Article  CAS  PubMed  Google Scholar 

  9. Nattel, S., Antzelevitch, C., & Noble, D. (2011). Resolving the M-cell debate: why and how. Heart Rhythm, 8(8), 1293–1295.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kim, Y. H., Xie, F., Yashima, M., et al. (1999). Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle. Circulation, 100(13), 1450–1459.

    Article  CAS  PubMed  Google Scholar 

  11. Pak, H. N., Kim, Y. H., Lim, H. E., Chou, C. C., Miyauchi, Y., Fang, Y. H., Sun, K., Hwang, C., & Chen, P. S. (2006). Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. Journal of Cardiovascular Electrophysiology, 17(7), 777–783.

    Article  PubMed  Google Scholar 

  12. Everett, T. H., Wilson, E. E., Foreman, S., & Olgin, J. E. (2005). Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping. Circulation, 112(11), 1532–1541.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Wu, J., Biermann, M., Rubart, M., & Zipes, D. P. (1998). Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium. Journal of Cardiovascular Electrophysiology, 9(12), 1336–1347.

    Article  CAS  PubMed  Google Scholar 

  14. Salama, G., Choi, B. R., Azour, G., Lavasani, M., Tumbev, V., Salzberg, B. M., Patrick, M. J., Ernst, L. A., & Waggoner, A. S. (2005). Properties of new, long-wavelength, voltage-sensitive dyes in the heart. Journal of Membrane Biology, 208(2), 125–140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Everett, T. H., Kok, L. C., Vaughn, R. H., Moorman, J. R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969–978.

    Article  PubMed  Google Scholar 

  16. Nguyen, D. T., Ding, C., Wilson, E., Marcus, G. M., & Olgin, J. E. (2010). Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm, 7(10), 1438–1445.

    Article  PubMed  Google Scholar 

  17. Liu, D. W., & Antzelevitch, C. (1995). Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circulation Research, 76(3), 351–365.

    Article  CAS  PubMed  Google Scholar 

  18. Sicouri, S., & Antzelevitch, C. (1991). A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circulation Research, 68(6), 1729–1741.

    Article  CAS  PubMed  Google Scholar 

  19. Poelzing, S. (2009). Are electrophysiologically distinct M-cells a characteristic of the wedge preparation? Heart Rhythm, 6(7), 1035–1037.

    Article  PubMed  Google Scholar 

  20. Dean, J. W., & Lab, M. J. (1990). Regional changes in ventricular excitability during load manipulation of the in situ pig heart. The Journal of Physiology, 429, 387–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Burton, F. L., & Cobbe, S. M. (1998). Effect of sustained stretch on dispersion of ventricular fibrillation intervals in normal rabbit hearts. Cardiovascular Research, 39(2), 351–359.

    Article  CAS  PubMed  Google Scholar 

  22. Efimov, I. R., Sidorov, V., Cheng, Y., & Wollenzier, B. (1999). Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart. Journal of Cardiovascular Electrophysiology, 10(11), 1452–1462.

    Article  CAS  PubMed  Google Scholar 

  23. Myles, R. C., Burton, F. L., Cobbe, S. M., & Smith, G. L. (2008). The link between repolarisation alternans and ventricular arrhythmia: does the cellular phenomenon extend to the clinical problem? Journal of Molecular and Cellular Cardiology, 45(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  24. Laurita, K. R., Wilson, L. D., & Rosenbaum, D. S. (2009). Cardiac alternans as a pathophysiologic mechanism of arrhythmias (5th ed.). Philadelphia, PA: Saunders Elsevier.

    Google Scholar 

  25. Wilson, L. D., Jeyaraj, D., Wan, X., Hoeker, G. S., Said, T. H., Gittinger, M., Laurita, K. R., & Rosenbaum, D. S. (2009). Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm, 6(2), 251–259.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Huang, J., Rogers, J. M., Killingsworth, C. R., Walcott, G. P., KenKnight, B. H., Smith, W. M., & Ideker, R. E. (2001). Improvement of defibrillation efficacy and quantification of activation patterns during ventricular fibrillation in a canine heart failure model. Circulation, 103(10), 1473–1478.

    Article  CAS  PubMed  Google Scholar 

  27. Moreno, J., Zaitsev, A. V., Warren, M., Berenfeld, O., Kalifa, J., Lucca, E., Mironov, S., Guha, P., & Jalife, J. (2005). Effect of remodelling, stretch and ischaemia on ventricular fibrillation frequency and dynamics in a heart failure model. Cardiovascular Research, 65(1), 158–166.

    Article  CAS  PubMed  Google Scholar 

  28. Berenfeld, O., & Pertsov, A. M. (1999). Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropy. Journal of Theoretical Biology, 199(4), 383–394.

    Article  CAS  PubMed  Google Scholar 

  29. Li, L., Jin, Q., Huang, J., Cheng, K. A., & Ideker, R. E. (2008). Intramural foci during long duration fibrillation in the pig ventricle. Circulation Research, 102(10), 1256–1264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Valderrabano, M., Lee, M. H., Ohara, T., Lai, A. C., Fishbein, M. C., Lin, S. F., Karagueuzian, H. S., & Chen, P. S. (2001). Dynamics of intramural and transmural reentry during ventricular fibrillation in isolated swine ventricles. Circulation Research, 88(8), 839–848.

    Article  CAS  PubMed  Google Scholar 

  31. Glukhov, A. V., Fedorov, V. V., Lou, Q., Ravikumar, V. K., Kalish, P. W., Schuessler, R. B., Moazami, N., & Efimov, I. R. (2010). Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circulation Research, 106(5), 981–991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Voss, F., Opthof, T., Marker, J., Bauer, A., Katus, H. A., & Becker, R. (2009). There is no transmural heterogeneity in an index of action potential duration in the canine left ventricle. Heart Rhythm, 6(7), 1028–1034.

    Article  PubMed  Google Scholar 

  33. Biermann, M., Rubart, M., Moreno, A., Wu, J., Josiah-Durant, A., & Zipes, D. P. (1998). Differential effects of cytochalasin D and 2,3 butanedione monoxime on isometric twitch force and transmembrane action potential in isolated ventricular muscle: implications for optical measurements of cardiac repolarization. Journal of Cardiovascular Electrophysiology, 9(12), 1348–1357.

    Article  CAS  PubMed  Google Scholar 

  34. Lou, Q., Li, W., & Efimov, I. R. (2012). The role of dynamic instability and wavelength in arrhythmia maintenance as revealed by panoramic imaging with blebbistatin vs. 2,3-butanedione monoxime. American Journal of Physiology. Heart and Circulatory Physiology, 302(1), H262–H269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Changyu Shen, PhD, and Hongbo Lin for their help with the statistical analysis.

Author contributions

Thomas Everett was responsible for the concept and design of the experiments and collection of data, performed the data analysis and interpretation, and drafted the manuscript. George Hulley and Roger Chang were trainees who performed the data analysis and interpretation. Ken Lee assisted in the concept and design of the experiments and collection of data. Emily Wilson assisted in the concept and design of the experiments and collection of data. Jeffrey Olgin was responsible for the concept and design of the experiments, interpretation of the data, and generation of the manuscript.

Funding sources

This study received funding from the NIH grant RO1-HL072854 (JEO), RC1 HL099789 (JEO & THE), and AHA Western States Affiliate Beginning Grant-in-Aid 0765177Y (THE).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Everett IV.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 14804 kb)

ESM 2

(MPG 8302 kb)

ESM 3

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everett, T.H., Hulley, G.S., Lee, K.W. et al. The effects of remodeling with heart failure on mode of initiation of ventricular fibrillation and its spatiotemporal organization. J Interv Card Electrophysiol 43, 205–215 (2015). https://doi.org/10.1007/s10840-015-0016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-0016-2

Keywords

Navigation