Skip to main content
Log in

Ablation of difficult right-sided accessory pathways aided by mapping of tricuspid annular activation using a Halo™ catheter

Halo-mapping of right sided accessory pathways

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Objective

To demonstrate that the use of a 20-pole catheter (Halo™) positioned around the tricuspid valve annulus (TVA) is helpful in rapidly localising right free wall accessory pathways (AP), enhancing catheter stability during ablation, and leading to increased success in ablating these challenging pathways.

Patients and methods

Seven consecutive patients who underwent Halo-mapping of right-sided AP were studied. All but one had previously failed ablation. With a Halo catheter deployed at TVA, the accessory pathway location was rapidly identified using the sites of earliest atrial (A) activation during ventricular (V) pacing or orthodromic tachycardia, or earliest V-activation during sinus rhythm or A-pacing were identified. The stability of the ablation catheter was guided fluoroscopically (with reference to the stationary Halo), and electrically (contact artefact between the ablation catheter and Halo poles).

Results

AP locations were identified by the Halo (anterior in one patient, antero-lateral in one, lateral in two, and postero-lateral in three) where similar local VA/AV intervals were recorded at both the ablation catheter and Halo bipoles recording the shortest VA/AV intervals (four of seven patients), contact artefact between the ablation catheter and those Halo bipoles was seen (six of seven patients), or both (three of seven patients). All APs were ablated successfully after a mean RF duration of 5±2 min, and 25±17 min post Halo deployment without clinical recurrence at 12±4 months follow-up.

Conclusion

A Halo positioned at the TVA can ease the localisation of right-sided AP, facilitate catheter stability during ablation, and guides successful ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackman, W. M., Wang, X. Z., Friday, K. J., et al. (1991). Catheter ablation of accessory atrioventricular pathways (Wolff–Parkinson–White syndrome) by radiofrequency current. New England Journal of Medicine, 324(23), 1605–1611, June 6.

    Article  PubMed  CAS  Google Scholar 

  2. Kay, G. N., Epstein, A. E., Dailey, S. M., & Plumb, V. J. (1993). Role of radiofrequency ablation in the management of supraventricular arrhythmias: Experience in 760 consecutive patients. Journal of Cardiovascular Electrophysiology, 4(4), 371–389, August.

    PubMed  CAS  Google Scholar 

  3. Calkins, H., Yong, P., Miller, J. M., et al. (1999). Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: Final results of a prospective, multicenter clinical trial. Circulation, 99(2), 262–270 (January 19).

    PubMed  CAS  Google Scholar 

  4. Calkins, H., Prystowsky, E., Berger, R. D., et al. (1996). Recurrence of conduction following radiofrequency catheter ablation procedures: Relationship to ablation target and electrode temperature. The Atakr multicenter investigators group. Journal of Cardiovascular Electrophysiology, 7(8), 704–712 (August).

    PubMed  CAS  Google Scholar 

  5. Xie, B., Heald, S. C., Camm, A. J., Rowland, E., & Ward, D. E. (1997). Radiofrequency catheter ablation of accessory atrioventricular pathways: Primary failure and recurrence of conduction. Heart, 77(4), 363–368 (April 1).

    PubMed  CAS  Google Scholar 

  6. Timmermans, C., Smeets, J. L., Rodriguez, L. M., et al. (1994). Recurrence rate after accessory pathway ablation. British Heart Journal, 72(6), 571–574 (December).

    PubMed  CAS  Google Scholar 

  7. Langberg, J. J., Calkins, H., Kim, Y. N., et al. (1992). Recurrence of conduction in accessory atrioventricular connections after initially successful radiofrequency catheter ablation. Journal of the American College of Cardiology, 19(7), 1588–1592 (June).

    PubMed  CAS  Google Scholar 

  8. Wang, L., & Yao, R. (2003). Radiofrequency catheter ablation of accessory pathway-mediated tachycardia is a safe and effective long-term therapy. Archives of Medical Research, 34(5), 394–398 (September).

    Article  PubMed  Google Scholar 

  9. Morady, F., Strickberger, A., Man, K. C., et al. (1996). Reasons for prolonged or failed attempts at radiofrequency catheter ablation of accessory pathways. Journal of the American College of Cardiology, 27(3), 683–689 (March 1).

    Article  PubMed  CAS  Google Scholar 

  10. Olgin, J. E., Kalman, J. M., Fitzpatrick, A. P., & Lesh, M. D. (1995). Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter. Activation and entrainment mapping guided by intracardiac echocardiography. Circulation, 92(7), 1839–1848 (October 1).

    PubMed  CAS  Google Scholar 

  11. Kalman, J. M., Olgin, J. E., Saxon, L. A., Fisher, W. G., Lee, R. J., & Lesh, M. D. (1996). Activation and entrainment mapping defines the tricuspid annulus as the anterior barrier in typical atrial flutter. Circulation, 94(3), 398–406 (August 1).

    PubMed  CAS  Google Scholar 

  12. Tai, C. T., Chen, S. A., Chiang, C. E., et al. (1997). Electrophysiologic characteristics and radiofrequency catheter ablation in patients with clockwise atrial flutter. Journal of Cardiovascular Electrophysiology, 8(1), 24–34 (January).

    PubMed  CAS  Google Scholar 

  13. Scaglione, M., Riccardi, R., Calo, L., et al. (2000). Typical atrial flutter ablation: Conduction across the posterior region of the inferior vena cava orifice may mimic unidirectional isthmus block. Journal of Cardiovascular Electrophysiology, 11(4), 387–395 (April).

    PubMed  CAS  Google Scholar 

  14. Chiang, C. E., Chen, S. A., Teo, W. S., et al. (1995). An accurate stepwise electrocardiographic algorithm for localization of accessory pathways in patients with Wolff–Parkinson–White syndrome from a comprehensive analysis of delta waves and R/S ratio during sinus rhythm. American Journal Of Cardiology, 76(1), 40–46 (July 1).

    Article  PubMed  CAS  Google Scholar 

  15. Fitzpatrick, A. P., Gonzales, R. P., Lesh, M. D., Modin, G. W., Lee, R. J., & Scheinman, M. M. (1994). New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram. Journal of the American College of Cardiology, 23(1), 107–116 (January).

    PubMed  CAS  Google Scholar 

  16. Xie, B., Heald, S. C., Bashir, Y., et al. (1994). Localization of accessory pathways from the 12-lead electrocardiogram using a new algorithm. American Journal of Cardiology, 74(2), 161–165 (July 15).

    Article  PubMed  CAS  Google Scholar 

  17. Morady, F., & Scheinman, M. M. (1984). Transvenous catheter ablation of a posteroseptal accessory pathway in a patient with the Wolff–Parkinson–White syndrome. New England Journal of Medicine, 310(11), 705–707 (March 15).

    Article  PubMed  CAS  Google Scholar 

  18. Scheinman, M. M., Wang, Y. S., Van Hare, G. F., & Lesh, M. D. (1992). Electrocardiographic and electrophysiologic characteristics of anterior, midseptal and right anterior free wall accessory pathways. Journal of the American College of Cardiology, 20(5), 1220–1229 (November 1).

    PubMed  CAS  Google Scholar 

  19. Anderson, R. H., Becker, A. E., Brechenmacher, C., Davies, M. J., & Rossi, L. (1975). Ventricular preexcitation. A proposed nomenclature for its substrates. European Journal of Control, 3(1), 27–36 (June).

    CAS  Google Scholar 

  20. Anderson, R. H., & Ho, S. Y. (1997). Anatomy of the atrioventricular junctions with regard to ventricular preexcitation. Pacing and Clinical Electrophysiology, 20(8 Pt 2), 2072–2076 (August).

    Article  PubMed  CAS  Google Scholar 

  21. Davis, L. M., Richards, D. A., Uther, J. B., & Ross, D. L. (1995). Simultaneous mapping of the tricuspid and mitral valve annuli at electrophysiological study. British Heart Journal, 73(4), 377–382 (April).

    PubMed  CAS  Google Scholar 

  22. Shah, M. J., Jones, T. K., & Cecchin, F. (2004). Improved localization of right-sided accessory pathways with microcatheter-assisted right coronary artery mapping in children. Journal of Cardiovascular Electrophysiology, 15(11), 1238–1243 (November).

    Article  PubMed  Google Scholar 

  23. Cappato, R., Schluter, M., Weiß, C., et al. (1996). Radiofrequency current catheter ablation of accessory atrioventricular pathways in Ebstein’s anomaly. Circulation, 94(3), 376–383 (August 1).

    PubMed  CAS  Google Scholar 

  24. Lesh, M. D. (1995). Ablation of right free wall atrioventricular accessory pathways. In: S. S. K. Huang (Ed.), Radiofrequency catheter ablation of cardiac arrhythmias: Basic concepts and clinical applications (pp. 311–334). Armonk, New York: Futura.

    Google Scholar 

  25. Drago, F., Silvetti, M. S., Di, P. A., Grutter, G., Bevilacqua, M., & Leibovich, S. (2002). Exclusion of fluoroscopy during ablation treatment of right accessory pathway in children. Journal of Cardiovascular Electrophysiology, 13(8), 778–782 (August).

    Article  PubMed  Google Scholar 

  26. Ai, T., Ikeguchi, S., Watanuki, M., et al. (2002). Successful radiofrequency current catheter ablation of accessory atrioventricular pathway in Ebstein’s anomaly using electroanatomic mapping. Pacing and Clinical Electrophysiology, 25(3), 374–375 (March).

    Article  PubMed  Google Scholar 

  27. Weng, K. P., Wolff, G. S., & Young, M. L. (2003). Multiple accessory pathways in pediatric patients with Wolff–Parkinson–White syndrome. American Journal of Cardiology, 91(10), 1178–1183 (May 15).

    Article  PubMed  Google Scholar 

  28. Sosa, E., Scanavacca, M., d’Avila, A., & Pilleggi, F. (1996). A new technique to perform epicardial mapping in the electrophysiology laboratory. Journal of Cardiovascular Electrophysiology, 7(6), 531–536 (June).

    PubMed  CAS  Google Scholar 

  29. Lam, C., Schweikert, R., Kanagaratnam, L., & Natale, A. (2000). Radiofrequency ablation of a right atrial appendage–ventricular accessory pathway by transcutaneous epicardial instrumentation. Journal of Cardiovascular Electrophysiology, 11(10), 1170–1173 (October).

    PubMed  CAS  Google Scholar 

  30. Schweikert, R. A., Saliba, W. I., Tomassoni, G., et al. (2003). Percutaneous pericardial instrumentation for endo-epicardial mapping of previously failed ablations. Circulation, 108(11), 1329–1335 (September 16).

    Article  PubMed  Google Scholar 

  31. Saul, J. P., Hulse, J. E., De, W., et al. (1993). Catheter ablation of accessory atrioventricular pathways in young patients: Use of long vascular sheaths, the transseptal approach and a retrograde left posterior parallel approach. Journal of the American College of Cardiology, 21(3), 571–583 (March 1).

    Article  PubMed  CAS  Google Scholar 

  32. Yamane, T., Jais, P., Shah, D. C., et al. (2000). Efficacy and safety of an irrigated-tip catheter for the ablation of accessory pathways resistant to conventional radiofrequency ablation. Circulation, 102(21), 2565–2568 (November 21).

    PubMed  CAS  Google Scholar 

  33. McClelland, J. H., Wang, X., Beckman, K. J., et al. (1994). Radiofrequency catheter ablation of right atriofascicular (Mahaim) accessory pathways guided by accessory pathway activation potentials. Circulation, 89(6), 2655–2666 (June).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Wong.

Additional information

Dr Wong is supported by a Wellcome Trust grant (071249/Z/03/Z).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, T., Hussain, W., Markides, V. et al. Ablation of difficult right-sided accessory pathways aided by mapping of tricuspid annular activation using a Halo™ catheter. J Interv Card Electrophysiol 16, 175–182 (2006). https://doi.org/10.1007/s10840-006-9044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-006-9044-2

Keywords

Navigation