Advertisement

Journal of Family and Economic Issues

, Volume 39, Issue 1, pp 19–33 | Cite as

Health Trajectories of Older Americans and Medical Expenses: Evidence from the Health and Retirement Study Data Over the 18 Year Period

  • Serah ShinEmail author
  • Hyungsoo Kim
Original Paper

Abstract

This study investigates the long-term relationship between individuals’ health state changes over time and burdens due to out-of-pocket medical expenses (OOP) in later years. We kept track of 5540 individuals’ health trajectories and their accumulated OOP using the HRS data from 1992 to 2010. American adults between 50 and 70 years old spend on average $27,000 on OOP, and have five common health trajectory patterns (Multi-Morbidity, Co-Morbidity, Mild Disease, Late Event, and No Disease). However, their OOPs differed substantially depending on the pattern of health trajectory. The most costly pattern of Multi-Morbidity needed $18,823 more than the least costly No Disease pattern. Older adults with the most costly pattern spent most of OOP on either prescription drugs or doctor/dental visits. Additionally, we found that the OOP burden of prescription medications was substantially relieved by the Medicare Part D implementation. These findings have several important implications for individuals, financial educators, and policy makers.

Keywords

Older Americans Chronic conditions Health trajectory Out-of-pocket medical expenses 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aassve, A., Billari, F. C., & Piccarreta, R. (2007). Strings of adulthood: A sequence analysis of young British women’s work-family trajectories. European Journal of Population, 23, 369–388. doi:  10.1007/s10680-007-9134-6.CrossRefGoogle Scholar
  2. Abbott, A. (1995). Sequence analysis: New methods for old ideas. Annual Review of Sociology, 21, 93–113. doi:  10.1146/annurev.so.21.080195.000521.CrossRefGoogle Scholar
  3. Abbott, A., & Hrycak, A. (1990). Measuring resemblance in sequence data: An optimal matching analysis of musicians’ careers. American Journal of Sociology, 96(1), 144–185. doi:  10.1086/229495.CrossRefGoogle Scholar
  4. Anyadike-Danes, M., & McVicar, D. (2010). My brilliant career: Characterizing the early labor market trajectories of British women from generation X. Sociological Methods and Research, 38(3), 482–512. doi:  10.1177/0049124110362968.CrossRefGoogle Scholar
  5. Barban, N. (2013). Family trajectories and health: A life course perspective. European Journal of Population, 29(4), 357–385. doi:  10.1007/s10680-013-9296-3.CrossRefGoogle Scholar
  6. Baulch, B., & Quisumbing, A. (2011). Testing and adjusting for attrition in household panel data. Chronic Poverty Research Centre (CPRC) Toolkit Note. Retrieved from http://www.chronicpoverty.org/uploads/assets/files/toolbox/CPRC_TOOLKIT_NOTE_ON_ATTRITION-revfinal.pdf.
  7. Blair-Loy, M. (1999). Career patterns of executive women in finance: An optimal matching analysis. American Journal of Sociology, 104(5), 1346–1397. doi:  10.1086/210177.CrossRefGoogle Scholar
  8. Carpenter, J., & Kenward, M. (2012). Multiple imputation and its application. Hoboken, NJ: Wiley.Google Scholar
  9. Christiansen, C. B., Olesen, J. B., Gislason, G., Lock-Hansen, M., & Torp-Pedersen, C. (2013). Cardiovascular and non-cardiovascular hospital admissions associated with atrial fibrillation: A Danish nationwide, retrospective cohort study. BMJ Open, 3(1), e001800. doi:  10.1136/bmjopen-2012-001800.CrossRefGoogle Scholar
  10. Crystal, S., Johnson, R. W., Harman, J., Sambamoorthi, U., & Kumar, R. (2000). Out-of-pocket health care costs among older Americans. Journals of Gerontology: Social Sciences, 55B(1), S51-S62. doi:  10.1093/geronb/55.1.S51.Google Scholar
  11. Cunningham, P. J. (2009). Chronic burdens: The persistently high out-of-pocket health care expenses faced by many Americans with chronic conditions. Issue Brief, 63, 1–14. Retrieved from http://www.amcp.org/workarea/downloadasset.aspx?id=12137.
  12. de Jager, D. J., Grootendorst, D. C., Jager, K. J., van Dijk, P. C., Tomas, L. M., Ansell, D., … & Wetzels, J. F. (2009). Cardiovascular and noncardiovascular mortality among patients starting dialysis. Journal of the American Medical Association, 302(16), 1782–1789. doi:  10.1001/jama.2009.1488.CrossRefGoogle Scholar
  13. Dijkstra, W., & Taris, T. (1995). Measuring the agreement between sequences. Sociological Methods and Research, 24(2), 214–231. doi:  10.1177/0049124195024002004.CrossRefGoogle Scholar
  14. Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Fahlman, C., Lynn, J., Doberman, D., Gabel, J., & Finch, M. (2006). Prescription drug spending for Medicare+ Choice beneficiaries in the last year of life. Journal of Palliative Medicine, 9(4), 884–893. doi:  10.1089/jpm.2006.9.884.CrossRefGoogle Scholar
  16. Gerber, Y., Melton, L. J., McNallan, S. M., Jiang, R., Weston, S. A., & Roger, V. L. (2013). Cardiovascular and noncardiovascular disease associations with hip fractures. The American Journal of Medicine, 126(2), 169.e19–169.e26. doi:  10.1016/j.amjmed.2012.06.032.CrossRefGoogle Scholar
  17. Guralnik, J. M., LaCroix, A. Z., Everett, D. F., & Kovar, M. G. (1989). Aging in the eighties: The prevalence of comorbidity and its association with disability. Retrieved from https://permanent.access.gpo.gov/gpo33200/ad170.pdf.
  18. Hair, J. F. Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2006). Multivariate data analysis. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
  19. Halpin, B., & Chan, T. W. (1998). Class careers as sequences: An optimal matching analysis of work-life histories. European Sociological Review, 14(2), 111–130. doi:  10.1093/oxfordjournals.esr.a018230.CrossRefGoogle Scholar
  20. Heiss, F., Leive, A., McFadden, D., & Winter, J. (2013). Plan selection in Medicare Part D: Evidence from administrative data. Journal of Health Economics, 32, 1325–1344. doi:  10.1016/j.jhealeco.2013.06.006.CrossRefGoogle Scholar
  21. Heron, M. (2015). Deaths: Leading causes for 2012. National Vital Statistics Reports, 64(10). Retrieved from https://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_10.pdf.
  22. HRS. (2011). Sample Sizes and Response Rates. Retrieved from http://hrsonline.isr.umich.edu/sitedocs/sample response.pdf.
  23. Hwang, W., Weller, W., Ireys, H., & Anderson, G. (2001). Out-of-pocket medical spending for care of chronic conditions. Health Affairs, 20(6), 267–278. doi:  10.1377/hlthaff.20.6.267.CrossRefGoogle Scholar
  24. Kim, H., Shin, S., & Zurlo, K. A. (2015). Sequential patterns of health conditions and financial outcomes in late life: Evidence from the Health and Retirement Study. The International Journal of Aging and Human Development, 81(1–2), 54–82. doi:  10.1177/0091415015614948.CrossRefGoogle Scholar
  25. Kim, H., Yoon, W., & Zurlo, K. A. (2012). Health shocks, out-of-pocket medical expenses and consumer debt among middle-aged and older Americans. Journal of Consumer Affairs, 46(3), 357–380. doi:  10.1111/j.1745-6606.2012.01236.x.CrossRefGoogle Scholar
  26. Kim, M. H., Johnston, S. S., Chu, B. C., Dalal, M. R., & Schulman, K. L. (2011). Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circulation: Cardiovascular Quality and Outcomes, 4(3), 313–320. doi:  10.1161/CIRCOUTCOMES.110.958165.Google Scholar
  27. Lloyd-Jones, D. M., Dyer, A. R., Wang, R., Daviglus, M. L., & Greenland, P. (2007). Risk factor burden in middle age and lifetime risks for cardiovascular and non-cardiovascular death (Chicago Heart Association Detection Project in Industry). The American Journal of Cardiology, 99(4), 535–540. doi:  10.1016/j.amjcard.2006.09.099.CrossRefGoogle Scholar
  28. Marshall, S., McGarry, K., & Skinner, J. S. (2011). The risk of out-of-pocket health care expenditure at the end of life. In Explorations in the economics of aging (pp. 101–128). Retrieved from http://www.nber.org/chapters/c11935.pdf.
  29. Martin, P., Schoon, I., & Ross, A. (2008). Beyond transitions: Applying optimal matching analysis to life course research. International Journal of Social Research Methodology, 11(3), 179–199. doi:  10.1080/13645570701622025.CrossRefGoogle Scholar
  30. McVicar, D., & Anyadike-Danes, M. (2002). Predicting successful and unsuccessful transitions from school to work by using sequence methods. Journal of the Royal Statistical Society: Series A (Statistics in Society), 165(2), 317–334. doi:  10.1111/1467-985X.00641.CrossRefGoogle Scholar
  31. Mills, D. (2016, April 28). Price of cancer drugs has skyrocketed since 2000. Healthline. Retrieved from http://www.healthline.com/health-news/price-of-cancer-drugs-hasskyrocketed#1.
  32. Muscari, A., Bianchi, G., Forti, P., Giansante, C., Giovagnoli, M., Magalotti, D., … & Zoli, M. (2013). A comparison of risk factors as predictors of cardiovascular and non-cardiovascular mortality in the elderly people–relevance of N-terminal pro-B-type natriuretic peptide and low systolic blood pressure. International Journal of Clinical Practice, 67(11), 1182–1191. doi:  10.1111/ijcp.12195.CrossRefGoogle Scholar
  33. National Health Council. (2014). About Chronic Diseases. Retrieved from http://www.nationalhealthcouncil.org/sites/default/files/NHC_Files/Pdf_Files/AboutChronicDisease.pdf.
  34. Paez, K. A., Zhao, L., & Hwang, W. (2009). Rising out-of-pocket spending for chronic conditions: A ten-year trend. Health Affairs, 28(1), 15–25. doi:  10.1377/hlthaff.28.1.15.CrossRefGoogle Scholar
  35. Piccarreta, R., & Billari, F. C. (2007). Clustering work and family trajectories by using a divisive algorithm. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(4), 1061–1078. doi:  10.1111/j.1467-985X.2007.00495.x.CrossRefGoogle Scholar
  36. Pollock, G. (2007). Holistic trajectories: A study of combined employment, housing and family careers by using multiple sequence analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(1), 167–183. doi:  10.1111/j.1467-985X.2006.00450.x.CrossRefGoogle Scholar
  37. Pollock, G., Antcliff, V., & Ralphs, R. (2002). Work orders: Analyzing employment histories using sequence data. International Journal of Social Research Methodology, 5(2), 91–105. doi:  10.1080/13645570110062432.CrossRefGoogle Scholar
  38. Rogowski, J., Lillard, L. A., & Kington, R. (1997). The financial burden of prescription drug use among elderly persons. The Gerontologist, 37(4), 475–482. doi:  10.1093/geront/37.4.475.CrossRefGoogle Scholar
  39. Salmela-Aro, K., Kiuru, N., Nurmi, J., & Eerola, M. (2011). Mapping pathways to adulthood among Finnish university students: Sequences, patterns, variations in family and work related roles. Advances in Life Course Research, 16(1), 25–41. doi:  10.1016/j.alcr.2011.01.003.CrossRefGoogle Scholar
  40. Sambamoorthi, U., Shea, D., & Crystal, S. (2003). Total and out-of-pocket expenditures for prescription drugs among older persons. The Gerontologist, 43(3), 345–359. doi:  10.1093/geront/43.3.345.CrossRefGoogle Scholar
  41. Schoenberg, N. E., Kim, H., Edwards, W., & Fleming, S. T. (2007). Burden of common multiple morbidity constellations on out-of-pocket medical expenditures among older adults. The Gerontologist, 47(4), 423–437. doi:  10.1093/geront/47.4.423.CrossRefGoogle Scholar
  42. Smith, J. P. (1999). Healthy bodies and thick wallets: The dual relation between health and economic status. The Journal of Economic Perspectives, 13(2), 144–166. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697076/pdf/nihms461647.pdf.
  43. Smith, J. P. (2003). Consequences and predictors of new health events. In Analyses in the economics of aging (pp. 213–237). Retrieved from http://www.nber.org/chapters/c10362.pdf.
  44. Stamler, J., Stamler, R., Neaton, J. D., Wentworth, D., Daviglus, M. L., Garside, D., … & Greenland, P. (1999). Low risk-factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: Findings for 5 large cohorts of young adult and middle-aged men and women. Journal of the American Medical Association, 282(21), 2012–2018. doi:  10.1001/jama.282.21.2012.CrossRefGoogle Scholar
  45. Stewart, S. T. (2004). Do out of pocket health expenditures rise with age among older Americans? The Gerontologist, 44(1), 48–57. doi:  10.1093/geront/44.1.48.CrossRefGoogle Scholar
  46. Stovel, K., Savage, M., & Bearman, P. (1996). Ascription into achievement: Models of career systems at Lloyds Bank, 1890–1970. American Journal of Sociology, 102(2), 358–399. doi:  10.1086/230950.CrossRefGoogle Scholar
  47. Wallace, R. B., & Herzog, A. R. (1995). Overview of the health measures in the Health and Retirement Study. The Journal of Human Resources, 30, S84–S107. doi:  10.2307/146279.CrossRefGoogle Scholar
  48. Watson, N., & Wooden, M. (2009). Identifying factors affecting longitudinal survey response. In Methodology of longitudinal surveys (pp. 157–182). doi:  10.1002/9780470743874.ch10.
  49. Wolff, J. L., Starfield, B., & Anderson, G. (2002). Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Archives of Internal Medicine, 162(20), 2269–2276. doi:  10.1001/archinte.162.20.2269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.University of KentuckyLexingtonUSA

Personalised recommendations