Skip to main content
Log in

Effect of Eu and Mn co-doping on temperature dependent dielectric relaxation behaviour and electric conduction mechanisms of bismuth ferrite

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The temperature dependent microscopic conduction processes and dielectric relaxations in Eu and Mn co-doped multiferroic bismuth ferrite have been examined using complex frequency-dependent ac conductivity, electric modulus and complex impedance examinations. The modified Debye’s function was used to explore the dispersion behaviour of the dielectric constant. The correlated barrier hopping concept is supported by the frequency variation in ac conductivity at various temperatures, which follows Jonscher’s power law. It was observed that when the co-doping concentration is low, the thermally assisted correlated barrier hopping (CBH) conduction model is better suited for the present samples whereas the overlapping large polaron tunnelling (OLPT) conduction model is better suited for higher co-doping concentrations. By looking at scaling curves for imaginary impedance (Z'') and modulus (M''), thermally induced relaxation processes have been demonstrated. It can be shown from a comparison of the Z'' and M'' spectra that charge carrier motion, particularly the dominance of short-range charge carriers which is effective at low temperatures while long-range charge carriers which is effective at high temperatures, leads to dielectric relaxation. By looking at semi-circular arcs on the Nyquist plot, it can be shown that at high temperature the electrical conduction process for the nanocrystalline sample is influenced by both grain and grain boundaries contributions. According to the study of ac conductivity under different temperatures, all compounds transport electricity with the help of electronic hopping, oxygen vacancy movement, or/and the production of the defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Upon reasonable request, information will be provided.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, (2006). https://doi.org/10.1038/nature05023

  2. G. Catalan, J.F. Scott, Adv. Mater. (2009). https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  3. W. Yi, Z. Lu, X. Liu, D. Huang, Z. Jia, Z. Chen, H. Zhu, Ceram. Int. 47(20) (2021). https://doi.org/10.1016/j.ceramint.2021.06.264

  4. R. Verma, A. Chauhan, K.M. Batoo, R. Kumar, M. Hadhi, E.H. Raslan, Ceram. Int. 47(3) (2021). https://doi.org/10.1016/j.ceramint.2020.09.220

  5. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2208266

    Article  Google Scholar 

  6. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B (2005). https://doi.org/10.1103/physrevb.71.014113

    Article  Google Scholar 

  7. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005). https://doi.org/10.1103/physrevb.71.060401

    Article  Google Scholar 

  8. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, J. Am. Ceram. Soc. (2005). https://doi.org/10.1111/j.1551-2916.2005.00306.x

    Article  Google Scholar 

  9. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. (2000). https://doi.org/10.1063/1.126468

    Article  Google Scholar 

  10. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Phys. Solid State (2003). https://doi.org/10.1134/1.1537425

    Article  Google Scholar 

  11. V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya, Phys. Rev. B (2004). https://doi.org/10.1103/physrevb.69.212102

    Article  Google Scholar 

  12. Q. Xu, H. Zai, D. Wu, Y.K. Tanga, M.X. Xu, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2009.05.129

    Article  Google Scholar 

  13. J. Wei, D. Xue, C. Wu, Z. Li, J. Alloys Compd. (2008). https://doi.org/10.1016/j.jallcom.2006.11.065

    Article  Google Scholar 

  14. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2839325

    Article  Google Scholar 

  15. G. Le Bras, D. Colson, A. Forget, N. Genand-Riondet, R. Tourbot, P. Bonville, Phys. Rev. B (2009). https://doi.org/10.1016/j.physb.2011.01.055

    Article  Google Scholar 

  16. T.D. Rao, T. Karthik, A. Srinivas, S. Asthana, Solid State Commun. (2012). https://doi.org/10.1016/j.ssc.2012.08.007

    Article  Google Scholar 

  17. F. Chang, N. Zhang, F. Yang, S. Wang, G. Song, J. Phys. D Appl. Phys. (2007). https://doi.org/10.1088/0022-3727/40/24/031

    Article  Google Scholar 

  18. M. Rangi, S. Sanghi, S. Jangra, K. Kaswan, S. Khasa, A. Agarwal, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.06.065

    Article  Google Scholar 

  19. A. Ablat, R. Wu, M. Mamat, J. Li, E. Muhemmed, C. Si, R. Wu, J. Wang, H. Qian, K. Ibrahim, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2014.05.137

    Article  Google Scholar 

  20. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, M. Singh, RSC Adv. (2016). https://doi.org/10.1039/c6ra02316a

    Article  Google Scholar 

  21. R. Das, K. Mandal, Magnetic. J. Magn. Magn. Mater. (2012). https://doi.org/10.1016/j.jmmm.2012.01.022

    Article  Google Scholar 

  22. A. Moure, J. Tartaj, C. Moure, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2011.03.132

    Article  Google Scholar 

  23. R. Pandey, L.K. Pradhan, P. Kumar, M. Kar, J. Phys. Chem. Solids (2018). https://doi.org/10.1016/j.jpcs.2018.03.042

    Article  Google Scholar 

  24. Y.-K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.H. Hong, Solid State Commun. (2005). https://doi.org/10.1016/j.ssc.2005.03.038

    Article  Google Scholar 

  25. B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Phys, Rev. B (2004). https://doi.org/10.1103/physrevb.69.064114

    Article  Google Scholar 

  26. Z. Cheng, X. Wang, S. Dou, H. Kimura, K. Ozawa, Phys. Rev. B (2008). https://doi.org/10.1063/1.3035915

    Article  Google Scholar 

  27. J. Liu, L. Fang, F. Zheng, S. Ju, M. Shenc, Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3183580

    Article  PubMed Central  Google Scholar 

  28. N.K. Verma, I. Kaur, Mater. Sci. Semicond. Process. (2015). https://doi.org/10.1016/j.mssp.2015.01.032

    Article  Google Scholar 

  29. H.J. Ren, W.L. Liu, Y.Y. Luo, G.Q. Tan, G.H. Dong, Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2013.11.068

    Article  Google Scholar 

  30. P.K. Gupta, D. Varshney, S. Satapathy, P. Sharma, Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.06.016

    Article  Google Scholar 

  31. V. Kumar, S. Singh, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.10.236

  32. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M. Kim, W. Kim, T.K. Song, Phys. Status Solidi A (2020). https://doi.org/10.1002/pssa.201900984

    Article  Google Scholar 

  33. M. Habiba, M.H. Leea, D.J. Kima, H.I. Choia, M. Kima, W. Kimb, T.K. Songa, K.S. Choi, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.11.199

    Article  Google Scholar 

  34. P. Kumar, M. Kar, Mater. Sci. Semicond. Process. (2015). https://doi.org/10.1016/j.mssp.2014.12.007

    Article  Google Scholar 

  35. S. Carbonin, F. Martignago, G. Menegazzo, A. Dal Negro, Phys. Chem. Miner. (2002). https://doi.org/10.1007/s00269-002-0262-6

    Article  Google Scholar 

  36. S. Ebrahimi, D. Souri, A. Khezripour, J. Lumin. (2022). https://doi.org/10.1016/j.jlumin.2022.118757

    Article  Google Scholar 

  37. A.K. Zak, N.S. Abd Aziz, A.M. Hashim, F. Kordi, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.05.155

  38. A. M. El Nahrawy, A. M. Bakr, B.A. Hemdan, A. B. Abou Hammad, Int. J. Environ. Sci. Technol. (2020). https://doi.org/10.1007/s13762-020-02786-x

  39. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4759436

    Article  Google Scholar 

  40. A.K. Jena, S. Satapathy, J. Mohanty, J. Appl. Phys. (2018). https://doi.org/10.1063/1.5039620

    Article  Google Scholar 

  41. S.K. Paswan, L.K. Pradhan, P. Kumar, S. Kumari, M. Kar, L. Kumar, Phys. Scr. (2022). https://doi.org/10.1088/1402-4896/ac87dc

    Article  Google Scholar 

  42. S.A. Saafan, S.T. Assar, J. Magn. Magn. Mater. (2012). https://doi.org/10.1016/j.jmmm.2012.04.037

    Article  Google Scholar 

  43. B. Want, R. Somod, M.D. Rather, J. Magnetics. (2017). https://doi.org/10.4283/jmag.2017.22.3.450

    Article  Google Scholar 

  44. C. Behera, P.R. Das, R.N.P. Choudhary, J. Electronics. Mater. (2014). https://doi.org/10.1007/s11664-014-3216-0

    Article  Google Scholar 

  45. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D. K. Pradhan R.S. Katiyar, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4885420

  46. K.S.A. Kumar, R.N. Bhowmik, Res. Exp. (2017). https://doi.org/10.1088/2053-1591/aa9d4a

    Article  Google Scholar 

  47. M. K. Fayek, M. F. Mostafa, F. Sayedahmed, S. S. Ata-Allah M. Kaiser, J. Magn. Magn. Mater. (2000). https://doi.org/10.1016/s0304-8853(99)00612-5

  48. K.S. Cole, R.H. Cole, J. Chem. Phys. (1941). https://doi.org/10.1063/1.1750906

    Article  Google Scholar 

  49. A. Ghosh, Phys. Rev. B (1993). https://doi.org/10.1103/physrevb.47.15537

    Article  Google Scholar 

  50. A. Laha, S.B. Krupanidhi, Mater. Sci. Eng. B (2003). https://doi.org/10.1016/s0921-5107(03)00033-3

    Article  Google Scholar 

  51. J. Pcharski, Solid State Ion. (1988). https://doi.org/10.1016/0167-2738(88)90315-3

    Article  Google Scholar 

  52. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceramics (1997). https://doi.org/10.1023/a:1009950415758

    Article  Google Scholar 

  53. M. Sural, A. Ghosh, J. Phys. Condens. Matter (1998). https://doi.org/10.1088/0953-8984/10/47/009

    Article  Google Scholar 

  54. T. Durga Rao, R. Ranjith, S. Asthana, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4869775

  55. M. Shekhar, L.K. Pradhan, L. Kumar, P. Kumar, J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10563-y

    Article  Google Scholar 

Download references

Acknowledgements

The researchers would like to thank Mahatma Gandhi Central University in Bihar and Indian Institute of Technology Patna for experimental facilities.

Funding

The authors affirm that they did not accept any money or grants for the creation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Amod Kumar and Aliva Panigrahi prepared the materials, collected the data, conducted the analysis, and wrote the first draft of manuscript. Mukesh Shekhar and Lawrence Kumar analyzed and interpreted the results. Pawan Kumar supervised the work, analyzed the results, and edited the manuscript with input from all the co-authors.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Panigrahi, A., Shekhar, M. et al. Effect of Eu and Mn co-doping on temperature dependent dielectric relaxation behaviour and electric conduction mechanisms of bismuth ferrite. J Electroceram (2024). https://doi.org/10.1007/s10832-024-00346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10832-024-00346-0

Keywords

Navigation