Skip to main content
Log in

Multi-phase structure and optimal properties of (Ba1-xCax)(Ti0.93Zr0.01Sn0.06)O3 ceramics in the MPB range

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

(0.93 − x)BT − 0.01BZ − 0.06BS − xCT or (Ba1-xCax)(Ti0.93Zr0.01Sn0.06)O3 (abbreviated as BCZTS) ceramics were produced using the standard solid-state reaction for 0.045 ≤ x ≤ 0.07. For the samples, it was found that orthorhombic (Amm2), rhombohedral (R3m) and tetragonal (P4mm) structures coexisted in two phases as well as three phases with distinct phase fractions. The largest size of crystalline grains was achieved after doping with 0.055 mol% and 0.065 mol% Ca. The optimal properties (Pmax = 12.05 μC/cm2, Pr = 5.61 μC/cm2, Ec = 230 V/mm, d*33 = 404 pm/V, Qc = 6.44 µC/cm2, Tc = 102 °C) were obtained for x = 0.07 where it has been found that orthorhombic, rhombohedral, and tetragonal phases all occurred at the same time. For compositions in the MPB range, the energy storage characteristics indicate high energy storage efficiency for low value of Ca doping. Given all the developments, it is obvious that Ca, Zr and Sn-doped BCZTS ceramics would be a good choice for lead-free electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. A.K. Yang, C.A. Wang, R. Guo, Y. Huang, C.W. Nan, Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceram. Int. 36(2), 549–554 (2010). https://doi.org/10.1016/j.ceramint.2009.09.022

    Article  CAS  Google Scholar 

  2. Q. Guo et al., High-performance Sm-Doped pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-Based Piezoceramics. ACS Appl. Mater. Interfaces 11(46), 43359–43367 (2019). https://doi.org/10.1021/acsami.9b15424

    Article  CAS  PubMed  Google Scholar 

  3. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25(12 SPEC. ISS), 2693–2700 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125

    Article  CAS  Google Scholar 

  4. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19(1), 111–124 (2007). https://doi.org/10.1007/s10832-007-9047-0

    Article  CAS  Google Scholar 

  5. N. Baskaran, H. Chang, Effect of Sn doping on the phase transformation properties of ferroelectric BaTiO3. J. Mater. Sci. Mate.r Electron. 12(9), 527–531 (2001). https://doi.org/10.1023/A:1012453526652

    Article  CAS  Google Scholar 

  6. N. Chaiyo, D.P. Cann, N. Vittayakorn, Phase transitions, ferroelectric, and piezoelectric properties of lead-free piezoelectric xBaZrO3–(0.25 – x)CaTiO3–0.75BaTiO3 ceramics. J. Mater. Sci. 50(18), 6171–6179 (2015). https://doi.org/10.1007/s10853-015-9174-y

    Article  CAS  Google Scholar 

  7. L.F. Zhu, B.P. Zhang, W.G. Yang, Enhancing piezoelectric coefficient d33 in LiF-doped BaTiO 3 ceramics by optimizing excess ba content. Mater. Res. Bull. 52, 158–161 (2014). https://doi.org/10.1016/j.materresbull.2014.01.018

    Article  CAS  Google Scholar 

  8. Z.Y. Shen, J.F. Li, Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure. J. Ceram. Soc. Japan 118(1382), 940–943 (2010). https://doi.org/10.2109/jcersj2.118.940

    Article  CAS  Google Scholar 

  9. W. Jiang, R. Zhang, B. Jiang, W. Cao, Characterization of piezoelectric materials with large piezoelectric and electromechanical coupling coefficients. Ultrasonics 41(2), 55–63 (2003). https://doi.org/10.1016/S0041-624X(02)00436-5

    Article  CAS  PubMed  Google Scholar 

  10. S. Shao et al., Erratum: high piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through solid-state reaction route. J. Phys. D Appl. Phys. 41, 125408 (2008). J. Phys. D Appl. Phys. 42(18), (2009). https://doi.org/10.1088/0022-3727/42/18/189801

  11. X. Wang, M. Gu, B. Yang, S. Zhu, W. Cao, Hall effect and dielectric properties of Mn-doped barium titanate. Microelectr. Eng. 66, 855–859 (2003). https://doi.org/10.1016/S0167-9317(02)01011-0

    Article  CAS  Google Scholar 

  12. S.B. Deshpande, P.D. Godbole, Y.B. Khollam, H.S. Potdar, Characterization of barium titanate: BaTiO 3 (BT) ceramics prepared from sol-gel derived BT powders. J. Electroceram. 15(2), 103–108 (2005). https://doi.org/10.1007/s10832-005-1460-7

    Article  CAS  Google Scholar 

  13. P.K. Panda, B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics 474(1), 128–143 (2015). https://doi.org/10.1080/00150193.2015.997146

    Article  CAS  Google Scholar 

  14. M. Sarra, B. Ayda, K. Hamadi, K. Olfa, Enhancing electrical and mechanical by Sn doping in BCZT for high performance nanogenerators, 2022 19th IEEE Int. Multi-Conference Syst. Signals Devices, SSD 2022, no. November, 561–565 (2022). https://doi.org/10.1109/SSD54932.2022.9955961

  15. S. Belkhadir et al., Effect of Sn on the energy storage performance and electric conduction mechanisms of BCZT ceramic. Mater. Today Proc. 51(xxxx), 2005–2014 (2021). https://doi.org/10.1016/j.matpr.2021.05.517

    Article  CAS  Google Scholar 

  16. S. Merselmiz et al., Design of lead-free BCZT-based ceramics with enhanced piezoelectric energy harvesting performances. Phys. Chem. Chem. Phys. 24(10), 6026–6036 (2022). https://doi.org/10.1039/d1cp04723j

    Article  CAS  PubMed  Google Scholar 

  17. Z. Luo et al., Enhanced electrocaloric effect in lead-free BaTi 1 – x sn x O 3 ceramics near room temperature. Appl. Phys. Lett. 105(10), 102904 (2014). https://doi.org/10.1063/1.4895615

    Article  CAS  Google Scholar 

  18. W. Liu, L. Cheng, S. Li, Prospective of (BaCa) (ZrTi)o 3 lead-free piezoelectric ceramics. Crystals 9(3), 179 (2019). https://doi.org/10.3390/cryst9030179

    Article  CAS  Google Scholar 

  19. L.-F. Zhu et al., Large piezoelectric effect of (ba,ca)TiO3–xBa(sn,Ti)O3 lead-free ceramics. J. Eur. Ceram. Soc. 36(4), 1017–1024 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.039

    Article  CAS  Google Scholar 

  20. H. Wang, J. Wu, Phase transition, microstructure, and electrical properties of ca, zr, and Sn-modified BaTiO3 lead-free ceramics. J. Alloys Compd. 615, 969–974 (2014). https://doi.org/10.1016/j.jallcom.2014.06.177

    Article  CAS  Google Scholar 

  21. Z. Hanani et al., Novel lead-free BCZT-based ceramic with thermally-stable recovered energy density and increased energy storage efficiency. J. Mater. 8(4), 873–881 (2022). https://doi.org/10.1016/j.jmat.2021.12.011

    Article  Google Scholar 

  22. C. Zhao, Y. Huang, J. Wu, Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat 2, 1163–1190 (2020). https://doi.org/10.1002/inf2.12147

    Article  CAS  Google Scholar 

  23. S. Belkhadir et al., Structural, dielectric and electrocaloric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1 – xSnx)O3 ceramics elaborated by sol–gel method. J. Mater. Sci. Mater. Electron. 30(15), 14099–14111 (2019). https://doi.org/10.1007/s10854-019-01776-1

    Article  CAS  Google Scholar 

  24. L.F. Zhu et al., Phase transition and high piezoelectricity in (ba,ca)(Ti 1-xSnx)O3 lead-free ceramics. Appl. Phys. Lett. 103(7), 18–22 (2013). https://doi.org/10.1063/1.4818732

    Article  CAS  Google Scholar 

  25. P.F. Zhou, B.P. Zhang, L. Zhao, L.F. Zhu, Effect of LiF addition on phase structure and piezoelectric properties of (ba,ca)(Ti,Sn)O3 ceramics sintered at low temperature. Ceram. Int. 41(3), 4035–4041 (2015). https://doi.org/10.1016/j.ceramint.2014.11.094

    Article  CAS  Google Scholar 

  26. W. Liu, J. Wang, X. Ke, S. Li, Large piezoelectric performance of Sn doped BaTiO3 ceramics deviating from quadruple point. J. Alloys Compd. 712, 1–6 (2017). https://doi.org/10.1016/j.jallcom.2017.04.013

    Article  CAS  Google Scholar 

  27. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  28. K.N.D.K. Muhsen, R.A.M. Osman, M.S. Idris, M.H.H. Jumali, N.H.B. Jamil, Enhancing the dielectric properties of (Ba0.85Ca0.15)(SnxZr0.10 – xTi0.90)O3 lead-free ceramics by stannum substitution. J. Mater. Sci. Mater. Electron. 30(23), 20654–20664 (2019). https://doi.org/10.1007/s10854-019-02431-5

    Article  CAS  Google Scholar 

  29. M. Habib et al., Enhancement of Piezoelectricity by Novel Poling Method of the rare-earth modified BiFeO3–BaTiO3 lead-free ceramics. Adv. Electron. Mater. (2023). https://doi.org/10.1002/aelm.202201210

    Article  Google Scholar 

  30. P.K. Panda, Review: Environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009). https://doi.org/10.1007/s10853-009-3643-0

    Article  CAS  Google Scholar 

  31. A.-B.M.A. Ibrahim, R. Murgan, M.K. Abd Rahman, J. Osm, Morphotropic phase boundary in ferroelectric materials. Ferroelectr. - Phys. Eff. (2011). https://doi.org/10.5772/17206

    Article  Google Scholar 

  32. L.F. Zhu, B.P. Zhang, L. Zhao, J.F. Li, High piezoelectricity of BaTiO3-CaTiO3-BaSnO 3 lead-free ceramics. J. Mater. Chem. C 2(24), 4764–4771 (2014). https://doi.org/10.1039/c4tc00155a

    Article  CAS  Google Scholar 

  33. Z. Hanani et al., Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J. Adv. Ceram. 9(2), 210–219 (2020). https://doi.org/10.1007/s40145-020-0361-1

    Article  CAS  Google Scholar 

  34. D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, Elastic, piezoelectric, and dielectric properties of ba(zr 0.2Ti0.8)O3-50(Ba0.7Ca 0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. J. Appl. Phys. 109(5), 1–8 (2011). https://doi.org/10.1063/1.3549173

    Article  CAS  Google Scholar 

  35. D. Lin, K.W. Kwok, H.L.W. Chan, Structure, dielectric and piezoelectric properties of Ba 0. 90 ca 0. 10 Ti 1 À x sn x O 3 lead-free ceramics. Ceram. Int. 40(5), 6841–6846 (2014). https://doi.org/10.1016/j.ceramint.2013.11.147

    Article  CAS  Google Scholar 

  36. F. Akram et al., Effect of heat-treatment mechanism on structural and electromechanical properties of eco-friendly (Bi, Ba)(Fe, Ti)O3 piezoceramics. J. Mater. Sci. 56(23), 13198–13214 (2021). https://doi.org/10.1007/s10853-021-06138-z

    Article  CAS  Google Scholar 

  37. G. Arlt, H. Peusens, The dielectric constant of Coarse Grained Batio3 ceramics. Ferroelectrics 48(1), 213–224 (1983). https://doi.org/10.1080/00150198308227857

    Article  CAS  Google Scholar 

  38. X.-G. Tang, H.L.-W. Chan, Effect of grain size on the electrical properties of (Ba, Ca) (Zr, Ti) O3 relaxor ferroelectric ceramics. J. Appl. Phys. 97, 034109 (2005). https://doi.org/10.1063/1.1849817. Published by the AIP Publishing

    Article  CAS  Google Scholar 

  39. V. Bijalwan et al., The effect of sintering temperature on the microstructure and functional properties of BCZT-xCeO 2 lead free ceramics. Mater. Res. Bull. 114(2018), 121–129 (2019). https://doi.org/10.1016/j.materresbull.2019.02.031

    Article  CAS  Google Scholar 

  40. K. Castkova et al., Chemical Synthesis, Sintering and Piezoelectric properties of Ba0.85Ca0.15 Zr0.1Ti0.9O3 lead-free ceramics. J. Am. Ceram. Soc. 98(8), 2373–2380 (2015). https://doi.org/10.1111/jace.13642

    Article  CAS  Google Scholar 

  41. W. Zheng, J. Lin, X. Liu, W. Yang, Y. Li, Enhanced ferroelectric and piezoelectric performance of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3lead-free ceramics upon ce and sb co-doping. RSC Adv. 11(5), 2616–2623 (2021). https://doi.org/10.1039/d0ra09441b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. P. Parjansri, S. Eitssayeam, U. Intatha, Electrical properties of (1–x) BCZT-xBZT lead-free ceramics, in 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM). (IEEE, 2013), pp. 115–118. https://doi.org/10.1109/ISAF.2013.6748718

    Chapter  Google Scholar 

  43. Z. Hanani, D. Mezzane, M. Amjoud, Y. Gagou, K. Hoummada, C. Perrin, A.G. Razumnaya, Z. Kutnjak, A. Bouzina, M. El Marssi, M. Gouné, B. Rožič, Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. J. Mater. Sci. Mater. Electron. 31, 10096–10104 (2020). https://doi.org/10.1007/s10854-020-03555-9

    Article  CAS  Google Scholar 

  44. K. Xu, P. Yang, W. Peng, L. Li, Temperature-stable MgO-doped BCZT lead-free ceramics with ultra-high energy storage efficiency. J. Alloys Compd. 829, 154516 (2020). https://doi.org/10.1016/j.jallcom.2020.154516

    Article  CAS  Google Scholar 

  45. F. Akram, M. Sheeraz, A. Hussain, I.W. Kim, T.H. Kim, C.W. Ahn, Thermally-stable high energy-storage performance over a wide temperature range in relaxor-ferroelectric Bi1/2Na1/2TiO3-based ceramics. Ceram. Int. 47(16), 23488–23496 (2021). https://doi.org/10.1016/j.ceramint.2021.05.065

    Article  CAS  Google Scholar 

  46. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics. J. Phys. Chem. Solids 114, 220–227 (2018). https://doi.org/10.1016/j.jpcs.2017.10.038

    Article  CAS  Google Scholar 

  47. Z. Hanani et al., Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic. RSC Adv. 10, 30746–30755 (2020). https://doi.org/10.1039/d0ra06116f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. P. Vineetha, R. Jose, A. Vijay, S. Charan Prasanth, S.K. Venkata, Enhanced relaxor behavior and high energy storage efficiency in niobium substituted (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3ceramics. Mater. Res. Express 9(6), 0–10 (2022). https://doi.org/10.1088/2053-1591/ac7637

    Article  CAS  Google Scholar 

  49. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Dielectric nonlinearity and electric breakdown behaviors of Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage utilizations. J Alloys Compd. 682, 594–600 (2016). https://doi.org/10.1016/j.jallcom.2016.04.317

    Article  CAS  Google Scholar 

  50. F. Akram et al., Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3–BaTiO3-based ceramics. J. Alloys Compd. 818(2020). https://doi.org/10.1016/j.jallcom.2019.152878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. N. S. Panwar, Head, Department of Instrumentation Engineering-USIC, SOET, HNB Garhwal University, Srinagar (Garhwal), for providing his valuable guidance and laboratory & analytical facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gambheer Singh Kathait.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathait, G.S., Rohilla, V. & Maini, S. Multi-phase structure and optimal properties of (Ba1-xCax)(Ti0.93Zr0.01Sn0.06)O3 ceramics in the MPB range. J Electroceram (2024). https://doi.org/10.1007/s10832-024-00345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10832-024-00345-1

Keywords

Navigation