Skip to main content
Log in

Conduction mechanisms and complex impedance analysis in La0.6Sr0.4FeO3 ceramic

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

La0.6Sr0.4FeO3 ceramic was elaborated by solid-state route. Preliminary room-temperature structural analysis evidences the sample formation in the orthorhombic structure and its phase purity. Electrical properties of the studied ceramic have been investigated according to dielectric measurements in the frequency range 10–1 - 106 Hz and the temperature range 93 - 313 K. Electrical conductivity curves exhibit a step-like behavior, at low temperatures, attributed to grain boundaries and grain contributions which are well described by the two Jonscher equations. The grains conduction mechanism is consistent with the thermally activated hopping of small polaron (SPH). Whereas, this mechanism is no longer satisfied for grain boundaries conduction mechanism at lower temperatures. Indeed, this latter is governed by the variable range hopping (VRH) model. This electrical conductivity analysis is further confirmed by the complex impedance formalism according to the obtained activation energies. Analysis of Nyquist plots at low temperatures has evidenced the presence of two grain boundaries effects attributed to the heterogeneous structure of La0.6Sr0.4FeO3 grain boundary according to the morphological analysis. Such characteristic may be at the origin of the grain boundaries electrical conductivity mechanism change at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. P. Porta, S. Cimino, S.D. Rossi, M. Faticanti, G. Minelli, I. Pettiti, Mater. Chem. Phys. 71, 165 (2001)

    Article  CAS  Google Scholar 

  2. V.R. Choudhaey, B.S. Uphade, S.G. Pataskar, Fuel. 78, 919 (1999)

    Article  Google Scholar 

  3. P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, P. Porta, Appl. Catal. B. 33, 193 (2001)

    Article  CAS  Google Scholar 

  4. V.V. Kharton, A.L. Shaulo, A.P. Viskup, M. Avdeev, A.A. Yaremchenko, M.V. Patrkeev, A.I. Kurbakov, E.N. Naumovich, F.M.B. Marques, Soli. State. Ionics. 150, 229 (2002)

    Article  CAS  Google Scholar 

  5. K.M. Parida, K.H. Reddy, S. Martha, D.P. Das, N. Biswal, Int. J. Hydrogen. Energy. 35, 12161 (2010)

    Article  CAS  Google Scholar 

  6. M. Noroozifar, M. Khorasani-Motlagh, M. Ekrami-Kakhki, J. Power. Sources. 248, 130 (2014)

    Article  CAS  Google Scholar 

  7. J. Deng, H. Dai, H. Jiang, L. Zhang, G. Wang, H. He, C.T. Au, Environ. Sci. Technol. 44(7), 2618 (2010)

    Article  CAS  Google Scholar 

  8. I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M.A. Centeno, A. Bonavita, G. Neri, S.G. Leonardi, Ceram. Int. 44(4), 4183 (2018)

    Article  CAS  Google Scholar 

  9. A. Rai, A.K. Thakur, Ionics. 23(10), 2863 (2017)

    Article  CAS  Google Scholar 

  10. M. Nakamura, F. Kagawa, T. Tanigaki, H.S. Park, T. Matsuda, D. Shindo, Y. Tokura, M. Kawasaki, Phys. Rev. Lett. 116(15), 1 (2016)

    Article  Google Scholar 

  11. S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, S. Maensiri, Mater. Res. Bull. 67, 118 (2015)

    Article  CAS  Google Scholar 

  12. X.N. Ying, Solid. State. Commun. 169, 20 (2013)

    Article  CAS  Google Scholar 

  13. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013)

    Article  CAS  Google Scholar 

  14. S. Acharya, P.K. Chakrabarti, Solid. State. Commun. 150, 1234 (2010)

    Article  CAS  Google Scholar 

  15. R. Andoulsin, K. Horchani-Naifer, M. Ferid, Ceram. Int. 39, 6527 (2013)

    Article  Google Scholar 

  16. S.A. Hosseini, M.T. Sadeghi, A. Alemi, A. Niaei, D. Salar, L.K. Ahmadi, Chin. J. Catal. 31, 747 (2010)

    Article  CAS  Google Scholar 

  17. I. Bhat, S. Husain, W. Khan, S.I. Patil, Mater. Res. Bull. 48, 4506 (2013)

    Article  CAS  Google Scholar 

  18. I.N. Sora, T. Caronna, F. Fontana, C.D.J. Fernande, A. Caneschi, M. Green, J. Solid. State. Chem. 191, 33 (2012)

    Article  Google Scholar 

  19. M.B. Bellakki, B. Kelly, V. Manivannan, J. Alloys. Compd. 489, 64 (2010)

    Article  CAS  Google Scholar 

  20. R.B. da Silva, J.M. Soares, J.A.P. da Costa, J.H. de Araújo, A.R. Rodrigues, F.L.A. Machado, J. Magn. Magn. Mater. 466, 306 (2018)

    Article  Google Scholar 

  21. R. Lataoui, A. Triki, S. Hcini, S. Zemni, J. Dhahri, O. Kanoun, Appl. Phys. A. 127, 721 (2021)

    Article  CAS  Google Scholar 

  22. D. Triyono, C.A. Kafa, H. Laysandra, J. Adv. Ecs. 8(5), 1850036 (2018)

    CAS  Google Scholar 

  23. G.H. Jonker, Physica. 22, 707 (1956)

    Article  CAS  Google Scholar 

  24. W.H. Jung, E. Iguchit, Phys. Condens. Matter. 7, 1215 (1995)

    Article  CAS  Google Scholar 

  25. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Magn. Magn. Mater. 371, 69 (2014)

    Article  CAS  Google Scholar 

  26. J. Frenkel, Kinetic theory of liquids (Clarendron press, Oxford, 1946), p. 488

    Google Scholar 

  27. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Article  CAS  Google Scholar 

  28. J. Rodriguez Carvajal, Phys. B. 192, 55 (1993)

    Article  CAS  Google Scholar 

  29. S. Hcini, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, J. Alloys. Compd. 509, 1394 (2011)

    Article  CAS  Google Scholar 

  30. G. Guleria, S. Thakur, D.K. Sharma, S. Thakur, P. Kumari, M. Shandilya, Adv. Nat. Sci. Nanosci. Nanotechnol. 13, 025004 (2022)

    Article  Google Scholar 

  31. S. Thakur, M. Shandilya, S. Thakur, D.K. Sharma, Surf. Interfaces. 20, 100551 (2020)

    Article  CAS  Google Scholar 

  32. S. Kumar, M. Shandilya, N. Thakura, Ferroelectr. Lett. Sect. 48, 128 (2021)

    Article  CAS  Google Scholar 

  33. V. Eswaramoorthi, R. Victor Williams, Ceram. Int. 41, 2434 (2015)

    Article  CAS  Google Scholar 

  34. P. Goel, K.L. Yadav, J. Mater. Sci. 42, 3928 (2007)

    Article  CAS  Google Scholar 

  35. S. Eitssayeam, U. Intatha, K. Pengpat, G. Rujijanagul, K.J.D. MacKenzie, T. Tunkasiri, Curr. Appl. Phys 9, 993 (2009)

    Article  Google Scholar 

  36. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, J. Alloy. Compd. 615, 553 (2014)

    Article  CAS  Google Scholar 

  37. A. Chakir, B. Mehdaoui, A. Chari, L. Bih, A. El Bouari, J. Mater. Sci. Mater. Electron. 33, 6150 (2022)

    Article  CAS  Google Scholar 

  38. D.E. Yildiz, I. Dökme, J. Appl. Phys. 110, 014507 (2011)

    Article  CAS  Google Scholar 

  39. D. Baba Basha, N. Suresh Kumar, K. Chandra Babu Naidu, G. Ranjith Kumar, Sci. Rep. 12, 12723 (2022)

    Article  CAS  Google Scholar 

  40. E. Huseynov, A. Garibov, R. Mehdiyeva, Phys. B. 450, 77 (2014)

    Article  CAS  Google Scholar 

  41. N. Parasad, G. Prasad, M. Kumar, S. Suryanaryana, T. Bhimasankaram, G. Kumar, Bull. Mater. Sci. 23(6), 483 (2000)

    Article  Google Scholar 

  42. D. Sivakumar, K. Chandra Babu Naidu, K. Prem Nazeer, M. Mohamed Rafi, G. Ramesh Kumar, B. Sathyaseelan, G. Killivalavan, A. Ayisha Gegam, J. Korean. Ceram. Soc. 55(3), 230 (2018)

    Article  CAS  Google Scholar 

  43. N. Raghuram, T.S. Rao, K. Chandra Babu Naidu, Mater. Sci. Semicond. Process. 94, 136 (2019)

    Article  CAS  Google Scholar 

  44. M. Sassi, A. Oueslati, M. Gargouri, Appl. Phys. A. 119, 763 (2015)

    Article  CAS  Google Scholar 

  45. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983), p. 380

    Google Scholar 

  46. A.K. Jonscher, Universal relaxation law (Chelsea Dielectics Press, London, 1996), p. 415

    Google Scholar 

  47. A.M. Abo El Ata, M.K. El Nimra, S.M. Attia, D. El Kony, A.H. Al-Hammadi, J. Magn. Magn. Mater. 297, 33 (2006)

    Article  CAS  Google Scholar 

  48. N.F. Mott, E.A. Davis, Electronic processes in non crystalline materials, 2nd edn. (Oxford University Press, 2012), p. 608

    Google Scholar 

  49. S. Mollah, H.L. Hazang, H.D. Yang, S. Pal, S. Taran, B.K. Chavdhuri, J. Magn. Magn. Mater. 284, 383 (2004)

    Article  CAS  Google Scholar 

  50. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi et al., J. Magn. Magn. Mater. 316, 23 (2007)

    Article  CAS  Google Scholar 

  51. M. Lal, M. Shandilya, R. Rai, A. Ranjan, S. Sharma, M.A. Valente, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9521-0

    Article  Google Scholar 

  52. S. Sharma, K. Sharmin, A. Ranjan, R. Rai, P. Kumari, S. Sinha, Ceram. Int. 41(6), 7713 (2015)

    Article  CAS  Google Scholar 

  53. S. Pattanatak, B. Parida, P.R. Das, R. Choudhary, Appl. Phys. A. 112(2), 387 (2013)

    Article  Google Scholar 

  54. A. Shukla, R. Choudhary, A. Thakur, J. Mater. Sci. Mater. Electron. 20, 745 (2009)

    Article  CAS  Google Scholar 

  55. S. Hajra, S. Sahoo, R. Das, R. Choudhary, J. Alloys. Compd. 750, 507 (2018)

    Article  CAS  Google Scholar 

  56. M. Shandilya, G. Anit Kaur, R. Rai, Mater. Chem. Phys. 263, 124422 (2021)

    Article  CAS  Google Scholar 

  57. D.K. Pradhan, B.K. Samantary, R.N.P. Chaudhary, A.K. Thakur, Mater. Sci. Eng. B. 116, 7 (2005)

    Article  Google Scholar 

  58. M. Nadeem, M.J. Akhtar, A.Y. Khan, Solid. State. Commun. 134, 431 (2005)

    Article  CAS  Google Scholar 

  59. M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Hoque, Chem. Phys. Lett. 366, 433 (2002)

    Article  CAS  Google Scholar 

  60. S. Thirumalairajan, K. Girija, V.R. Mastelaro, N. Ponpandian, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3540-z

    Article  Google Scholar 

  61. C. Tian, S.W. Chan, J. Am. Ceram. Soc. 85(9), 2222 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Triki.

Ethics declarations

Conflict of interest

The authors of this work certify that this manuscript is the author’s original work and has not been published nor has been submitted simultaneously elsewhere. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lataoui, R., Triki, A., Hcini, S. et al. Conduction mechanisms and complex impedance analysis in La0.6Sr0.4FeO3 ceramic. J Electroceram 50, 121–138 (2023). https://doi.org/10.1007/s10832-023-00310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00310-4

Keywords

Navigation