Skip to main content

Advertisement

Log in

Investigation on magnetic and electric properties of morphologically different perovskite LaFeO3 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, investigation on magnetic and electric properties of LaFeO3 nanostructures like nanopetals, dendrites, nanorods and nanospheres prepared by surfactant-assistant hydrothermal process were performed. X-ray powder diffraction pattern of all the prepared samples exposed the formation of the single phase orthorhombic crystals. Transmission electron microscopy images revealed the shape and size of the synthesized LaFeO3 nanostructures and were found to be in the range ~50–90 nm. The weak ferromagnetic behaviour of the as prepared nanostructures was exhibited using vibrating sample magnetometer at room temperature. The activation energy for electrical conduction has been calculated from the Arrhenius plot using impedance measurement. The activation energy for the grain conduction was found to be in the range 0.110–0.142 eV for different LaFeO3 nanostructures. Temperature and frequency dependent dielectric properties were investigated and found to be two orders of magnitude higher than the other reported perovskite oxide materials. The excellent combination of magnetic and electric properties of LaFeO3 nanostructure materials is found to be suitable for use in high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3(La(1−x)Zn x FeO3, x = 0.10, and 0.30). J. Magn. Magn. Mater. 329, 133–141 (2013)

    Article  Google Scholar 

  2. J. Yoo, S. Kim, H. Choi, Y. Rhim, J. Lim, S. Lee, A.J. Jacobson, Size effect on magnetic and dielectric properties in nanocrystalline LaFeO3. J. Electroceram. 26, 56–62 (2011)

    Article  Google Scholar 

  3. E.V. Tsipis, M.V. Patrakeev, V.V. Kharton, A.A. Yaremchenko, G.C. Mather, A.L. Shaula, I.A. Leonidov, V.L. Kozhevnikov, J.R. Frade, Transport properties and thermal expansion of Ti-substituted La1−x Sr x FeO3−δ (x = 0.5–0.7). Solid State Sci. 7, 355–365 (2005)

    Article  Google Scholar 

  4. A.H. Wu, H. Shen, J. Xu, L.W. Jiang, L.Q. Luo, S.J. Yuan, S.X. Cao, H.J. Zhang, Preparation and magnetic properties of RFeO3 nanocrystalline powders. J. Sol-Gel Sci. Technol. 59, 158–163 (2011)

    Article  Google Scholar 

  5. P. Pramanik, R.N. Das, Structure property relations of chemically synthesized nanocrystalline PZT powders. Mater. Sci. Eng. A 304–306, 775–779 (2001)

    Article  Google Scholar 

  6. K. Girija, S. Thirumalairajan, D. Mangalaraj, Morphology controllable synthesis of parallely arranged single-crystalline β-Ga2O3 nanorods for photocatalytic and antimicrobial activities. Chem. Eng. J. 236, 181–190 (2014)

    Article  Google Scholar 

  7. R.J. Cava, B. Batlogg, J.J. Krajewski, R. Farrow, L.W. Rupp Jr, A.E. White, K. Short, W.F. Peck, T. Kometani, Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature 332, 814–816 (1988)

    Article  Google Scholar 

  8. Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999)

    Article  Google Scholar 

  9. S.D. Shenoy, P.A. Joy, M.R. Anantharaman, Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J. Magn. Magn. Mater. 269, 217–226 (2004)

    Article  Google Scholar 

  10. S. Huang, K. Ruan, Z. Lv, P. Wei, H. Wu, M. Li, J. Zhang, Y. Chai, H. Yang, L. Cao, X. Li, Magnetic and transport properties in layered Nd1−xSr1+xCoO4. Phys. Rev. B Condens. Matter Mater. Phys 73, 094431 (2006)

    Article  Google Scholar 

  11. Y. Shimada, S. Miyasaka, R. Kumai, Y. Tokura, Semiconducting ferromagnetic states in La1−xSr1+xCoO4. Phys. Rev. B Condens. Matter Mater. Phys. 73, 134424 (2006)

    Article  Google Scholar 

  12. P. Porta, S. De Rossi, M. Faticanti, G. Minelli, I. Pettiti, L. Lisi, M. Turco, Perovskite-type oxides: I. structural, magnetic, and morphological properties of LaMn1−x CuxO3 and LaCo1−x Cu x O3 solid solutions with large surface area. J. Solid State Chem. 146, 291–304 (1999)

    Article  Google Scholar 

  13. D. Cordischi, M. Faticanti, G. Minelli, M. Occhiuzzi, P. Porta, LaAl1xCrxO3 perovskite-type solid solutions: structural, electronic, magnetic properties and catalytic activity towards CO oxidation. Phys. Chem. Chem. Phys. 4, 3085–3090 (2002)

    Article  Google Scholar 

  14. P. Singh, D. Kumar, O. Parkash, Dielectric behaviour of the system BaSn1−xNbxO3 (x ≤ 0.10). J. Appl. Phys. 97, 074103 (2005)

    Article  Google Scholar 

  15. Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, G. Ding, Electrical and optical properties of Sb-doped BaSnO3 epitaxial films grown by pulsed laser deposition. J. Phys. D Appl. Phys. 43, 455401 (2010)

    Article  Google Scholar 

  16. X. Luo, Y.S. Oh, A. Sirenko, P. Gao, T.A. Tyson, K. Char, S.W. Cheong, High carrier mobility in transparent Ba1−xLaxSnO3 crystals with a wide band gap. Appl. Phys. Lett. 100, 172112 (2012)

    Article  Google Scholar 

  17. W.B. Li, J.X. Wang, H. Gong, Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 148, 81–87 (2009)

    Article  Google Scholar 

  18. J. Lojevska, A. Kolodziej, J. Zak, J. Stoch, Pd/Pt promoted Co3O4 catalysts for VOCs combustion: preparation of active catalyst on metallic carrier. Catal. Today 105, 655–661 (2005)

    Article  Google Scholar 

  19. Y. Masuda, K. Kato, Liquid-phase patterning and microstructure of anatase TiO2 films on SnO2: F substrates using super hydrophilic surface. Chem. Mater. 20, 1057–1063 (2008)

    Article  Google Scholar 

  20. J.H. Su, L.Q. Jing, K. Shi, H.G. Fu, Synthesis of large surface area LaFeO3 nanoparticles by SBA16 template method as high active visible photocatalysts. J. Nanopart. Res. 12, 967–974 (2010)

    Article  Google Scholar 

  21. R.H. Kodama, A.E. Berkowitz, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394 (1996)

    Article  Google Scholar 

  22. M.L. Billas, A. Chatelain, W.A. de Heer, Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265, 1682 (1994)

    Article  Google Scholar 

  23. J. Shi, S. Gider, K. Babcock, D.D. Awschalom, Magnetic clusters in molecular beams, metals, and semiconductors. Science 271, 937 (1996)

    Article  Google Scholar 

  24. S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, N. Ponpandian, Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity. Chem. Eng. J. 209, 420–428 (2012)

    Article  Google Scholar 

  25. S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Novel synthesis of LaFeO3 nanostructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds. Cryst. Growth Des. 13, 291–302 (2013)

    Article  Google Scholar 

  26. S. Thirumalairajan, K. Girija, N.Y. Hebalkar, D. Mangalaraj, N. Ponpandian, Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities. RSC Adv. 3, 7549–7561 (2013)

    Article  Google Scholar 

  27. S. Thirumalairajan, K. Girija, V.R. Mastelaro, N. Ponpandian, Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO3 nanostructures comprised of nanosheet petals. New J. Chem. 38, 5480–5490 (2014)

    Article  Google Scholar 

  28. M.C. Carotta, M.A. Butturi, Y. Sadaoka, Microstructural evolution of nanosized LaFeO3 Powders from the thermal decomposition of a cyano-complex for thick film gas sensors. Sens. Actuators B 44, 590–594 (1997)

    Article  Google Scholar 

  29. M. Kumar, B. Ravikumar, T.C. Alex, Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and SrMg-doped LaGaO3 for ITSOFC application using different wet chemical routes. Mater. Chem. Phys. 113, 803–815 (2009)

    Article  Google Scholar 

  30. F. Munakata, H. Takahashi, Y. Akimune, Y. Shichi, M. Tanimura, Y. Inoue, R. Itti, Y. Koyama, Phys. Rev. B Condens. Matter Mater. Phys. 56, 979 (1997)

    Article  Google Scholar 

  31. F.C. Fonseca, A.S. Ferlauto, F. Alvarez, G.F. Goya, R.F. Jardim, Morphological and magnetic properties of carbon–nickel nanocomposite thin films. J. Appl. Phys. 97, 044313 (2005)

    Article  Google Scholar 

  32. S.J. Lee, J.R. Jeong, S.C. Shin, J.C. Kim, J.D. Kim, Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by co-precipitation technique. J. Magn. Magn. Mater. 282, 147–150 (2004)

    Article  Google Scholar 

  33. N. Gayathri, A.K. Raychaudhuri, S.K. Tiwary, Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: a study of the La0.7Ca0.3Mn1−xCoxO3 system. Phys. Rev. B Condens. Matter Mater. Phys. 56, 1345–1353 (1997)

    Article  Google Scholar 

  34. D. Xue, G. Chai, X. Li, X. Fan, Effects of grain size distribution on coercivity and permeability of ferromagnets. J. Magn. Magn. Mater. 320, 1541–1543 (2008)

    Article  Google Scholar 

  35. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Ferromagnetism in nanoscale BiFeO3. Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  36. S. Vijayanand, H.S. Potdar, P.A. Joy, Origin of high room temperature ferromagnetic moment of nanocrystalline multiferroic BiFeO3. Appl. Phys. Lett. 94, 182507 (2009)

    Article  Google Scholar 

  37. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  38. M. Malki, C.M. Hoo, M.L. Mecartney, H. Schneider, Electrical conductivity of mullite ceramics. J. Am. Ceram. Soc. 97, 1923–1930 (2014)

    Article  Google Scholar 

  39. A.K. Jonscher, The universal dielectric response and its physical significance. IEEE Trans. Electr. Insul. 27, 407 (1992)

    Article  Google Scholar 

  40. J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51, 1473–1479 (2006)

    Article  Google Scholar 

  41. J.E.F.S. Rodrigues, C.W.D.A. Paschoal, E.N. Silva, K.A. Mince, M.W. Lufaso, Relaxations in Ba2BiTaO6 ceramics investigated by impedance and electric modulus spectroscopies. Mater. Res. Bull. 47, 878–882 (2012)

    Article  Google Scholar 

  42. G. Gouadec, P. Colomban, Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53, 1 (2007)

    Article  Google Scholar 

  43. I. Kosacki, V. Petrovsky, H.U. Anderson, P. Colomban, Raman spectroscopy of nanocrystalline ceria and zirconia thin films. J. Am. Ceram. Soc. 85, 2646–2650 (2004)

    Article  Google Scholar 

  44. M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, L. Liu, Bifunctional properties of hydrothermal synthesized BaMF4 (M = Co, Ni and Zn). J. Appl. Phys. 106, 103912 (2009)

    Article  Google Scholar 

  45. C.W. Wu, Y.H. Nan, Y. Lin, Deng, giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 89, 217601 (2002)

    Article  Google Scholar 

  46. M. Idrees, M. Nadeem, M. Mehmood, M. Atif, K.H. Chae, M.M. Hassan, Impedance spectroscopic investigation of delocalization effects of disorder induced by Ni doping in LaFeO3. Acta Mater. 44, 105401 (2011)

    Google Scholar 

  47. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Origin of colossal dielectric response in LaFeO3. Acta Mater. 59, 1338–1345 (2011)

    Article  Google Scholar 

  48. S. Javaid, M.J. Akhtar, Pressure-induced magnetic, structural, and electronic phase transitions in LaFeO3: a density functional theory (generalized gradient approximation) + U study. J. Appl. Phys. 116, 023704 (2014)

    Article  Google Scholar 

  49. Z. Zanolli, J.C. Wojdeł, J. Íñiguez, P. Ghosez, Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys. Rev. B Condens. Matter Mater. Phys. 88, 060102 (2013)

    Article  Google Scholar 

  50. N.T. Padal, S.A. Pawar, Y.D. Kolekar, S.V. Kulkarni, P.B. Joshi, Structural, dielectric and electron transport properties of LaFeO3 substituted (PbBa) TiO3 ferroelectrics. Ferroelectrics 323, 123–129 (2005)

    Article  Google Scholar 

  51. I. Wærnhus, P.E. Vullum, R. Holmestad, T. Grande, K. Wiik, Electronic properties of polycrystalline LaFeO3. Part I: experimental results and the qualitative role of Schottky defects. Solid State Ion. 176, 2783–2790 (2005)

    Article  Google Scholar 

  52. P. Kanhere, J. Nisar, Y. Tang, B. Pathak, R. Ahuja, J. Zheng, Z. Chen, Electronic structure, optical properties, and photocatalytic activities of LaFeO3–NaTaO3 solid solution. J. Phys. Chem. C 116, 22767–22773 (2012)

    Article  Google Scholar 

  53. G.R. Hearne, M.P. Pasternak, R.D. Taylor, P. Lacorre, Electronic structure and magnetic properties of LaFeO3 at high pressure. Phys. Rev. B Condens. Matter Mater. Phys. 51, 11495–11500 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

One of the author S. T gratefully acknowledges Jawaharlal Nehru Memorial Fund for Doctoral studies (Ref: SU-A/270/2011-2012/388 dated 09-12-2010) and also Brazilian research financing institutions: CAPES, FAPESP/CEPID 2013/19049-0, INCTMN/CNPq and FAPESP for financial aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thirumalairajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirumalairajan, S., Girija, K., Mastelaro, V.R. et al. Investigation on magnetic and electric properties of morphologically different perovskite LaFeO3 nanostructures. J Mater Sci: Mater Electron 26, 8652–8662 (2015). https://doi.org/10.1007/s10854-015-3540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3540-z

Keywords

Navigation