Skip to main content

Advertisement

Log in

Tunning the dielectric and energy storage properties of high entropy ceramics (Bi0.2Na0.2K0.2La0.2Sr0.2)(Ti1-xScx)O3 by Sc-doping at B-site in perovskite structure

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The (Bi0.2Na0.2K0.2La0.2Sr0.2)(Ti1-xScx)O3 (BNKLST-xSc) high entropy ceramics (HECs) have been successfully synthesized via a citrate acid method. The effects of Sc-doping on the lattice structure, microstructural morphology, dielectric and energy-storage properties of HECs are comprehensively investigated. The results indicate that although Sc3+ doped at B-site does not alternate the perovskite structure of BNKLST with a single phase, it results in lattice expansion and weakened bonding in TiO6 octahedron. The dielectric constant of BNKLST-xSc is reduced while the dielectric relaxation is enhanced with increasing Sc content x, due to the enhanced structural inhomogeneity in nano-regions. In addition, the lattice structure of BNKLST-0.2Sc exhibits ultra-high thermal stability at 30–300 °C, which achieves the maximum energy storage density of 1.094 J/cm3 with an outstanding efficiency better than 80%, accompanying by the mechanical and dielectric losses as low as ~ 10–3. It is suggested that BNKLST-0.2Sc could be promising dielectric materials in capacitors and energy-storage devices with an excellent combination of ultrahigh power density, high energy density, thermal stability as well as low mechanical and dielectric losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. G. Liu, J. Dong, L. Zhang, L. Yu, F. Wei, Y. Li, J. Gao, J. Hu, Y. Yan, Q. Li, K. Yu, L. Jin, Ceram. Int. 46, 11680 (2020)

    Article  CAS  Google Scholar 

  2. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Adv. Mater. 29, (2017)

  3. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Sci. (80- ) 313, 334 (2006)

    Article  CAS  Google Scholar 

  4. Q. Li, K. Han, M.R. Gadinski, G. Zhang, Q. Wang, Adv. Mater. 26, 6244 (2014)

    Article  CAS  Google Scholar 

  5. L. Spiridigliozzi, G. Dell’Agli, S. Esposito, P. Rivolo, S. Grasso, V.M. Sglavo, M. Biesuz, Scr. Mater. 214, 114655 (2022)

    Article  CAS  Google Scholar 

  6. T.P. Mishra, S. Wang, C. Lenser, D. Jennings, M. Kindelmann, W. Rheinheimer, C. Broeckmann, M. Bram, O. Guillon, Acta Mater. 231, 117918 (2022)

    Article  CAS  Google Scholar 

  7. Y. Lin, N. Luo, M. Chamas, C. Hu, S. Grasso, Int. J. Appl. Ceram. Technol. 18, 1560 (2021)

    Article  CAS  Google Scholar 

  8. A. Amiri, R. Shahbazian-Yassar, J. Mater. Chem. A 9, 782 (2021)

    Article  CAS  Google Scholar 

  9. S. Zhou, Y. Pu, X. Zhang, Y. Shi, Z. Gao, Y. Feng, G. Shen, X. Wang, D. Wang, Chem. Eng. J. 427, 131684 (2022)

    Article  CAS  Google Scholar 

  10. J. Liu, K. Ren, C. Ma, H. Du, Y. Wang, Ceram. Int. 46, 20576 (2020)

    Article  CAS  Google Scholar 

  11. Y. Pu, Q. Zhang, R. Li, M. Chen, X. Du, S. Zhou, Appl. Phys. Lett. 115, 0 (2019)

    Article  CAS  Google Scholar 

  12. W. Sun, F. Zhang, X. Zhang, T. Shi, J. Li, Y. Bai, C. Wang, Z. Wang, Ceram. Int. (2022)

  13. P. Tsiakaras, C. Athanasiou, G. Marnellos, M. Stoukides, J.E. Ten, Elshof, H.J.M. Bouwmeester, Appl. Catal. A Gen. 169, 249 (1998)

    Article  CAS  Google Scholar 

  14. C. Shi, L. Meidong, L. Churong, Z. Yike, J.Da Costa, Thin Solid Films 375, 288 (2000)

    Article  CAS  Google Scholar 

  15. Y. Yamashita, Y. Hosono, K. Harada, N. Ichinose, J. Japanese, Appl. Physics, Part 1 Regul. Pap Short. Notes Rev. Pap 39, 5593 (2000)

    Article  CAS  Google Scholar 

  16. X.H. Lv, W.Q. Liao, P.F. Li, Z.X. Wang, C.Y. Mao, Y. Zhang, J. Mater. Chem. C 4, 1881 (2016)

    Article  CAS  Google Scholar 

  17. T. Zheng, H. Deng, W. Zhou, X. Zhai, H. Cao, L. Yu, P. Yang, J. Chu, Ceram. Int. 42, 6033 (2016)

    Article  CAS  Google Scholar 

  18. J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, and J. C. Diniz da Costa. J. Memb. Sci. 320, 13 (2008)

    Article  CAS  Google Scholar 

  19. H. Wang, Q. Hu, X. Liu, Q. Zheng, N. Jiang, Y. Yang, K.W. Kwok, C. Xu, D. Lin, Ceram. Int. 45, 23233 (2019)

    Article  CAS  Google Scholar 

  20. X. Zheng, G. Zheng, Z. Lin, Z. Jiang, Ceram. Int. 39, 1233 (2013)

    Article  CAS  Google Scholar 

  21. S.K. Acharya, T.M. Kim, J.H. Hyung, B.G. Ahn, S.K. Lee, J. Alloys Compd. 586, 549 (2014)

    Article  CAS  Google Scholar 

  22. W. Yang, G. Zheng, J. Am. Ceram. Soc. 105, 1083 (2022)

    Article  CAS  Google Scholar 

  23. L. Wang, W. Bai, X. Zhao, Y. Ding, F. Wen, L. Li, W. Wu, P. Zheng, J. Zhai, J. Mater. Sci. Mater. Electron. 31, 1491 (2020)

    Article  CAS  Google Scholar 

  24. H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, J. Am. Ceram. Soc. 92, 1719 (2009)

    Article  CAS  Google Scholar 

  25. B. Luo, X. Wang, E. Tian, H. Song, H. Wang, L. Li, ACS Appl. Mater. Interfaces 9, 19963 (2017)

    Article  CAS  Google Scholar 

  26. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  CAS  Google Scholar 

  27. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater. 142, 116 (2018)

    Article  CAS  Google Scholar 

  28. L. Zhang, X. Pu, M. Chen, S. Bai, Y. Pu, J. Eur. Ceram. Soc. 38, 2304 (2018)

    Article  CAS  Google Scholar 

  29. Y. Cao, Q. Wang, Y. Liu, X. Ning, J. Therm. Spray. Technol. 27, 1594 (2018)

    Article  CAS  Google Scholar 

  30. V.K. Veerapandiyan, S. Khosravi, H.G. Canu, A. Feteira, V. Buscaglia, K. Reichmann, M. Deluca, J. Eur. Ceram. Soc. 40, 4684 (2020)

    Article  CAS  Google Scholar 

  31. Z. Raddaoui, N. Kokanyan, M.D. Fontana, S.E. Kossi, J. Dhahri, J. Mol. Struct. 1230, 129939 (2021)

    Article  CAS  Google Scholar 

  32. R. Selvamani, G. Singh, V. Sathe, V.S. Tiwari, P.K. Gupta, J. Phys. Condens. Matter. 23, (2011)

  33. Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 35, 2647 (2019)

    Article  CAS  Google Scholar 

  34. L. Wu, B. Luo, E. Tian, J. Alloys Compd. 866, 158933 (2021)

    Article  CAS  Google Scholar 

  35. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.J. Wang, Nano Energy 58, 768 (2019)

    Article  CAS  Google Scholar 

  36. J. Huang, H. Qi, Y. Gao, A. Xie, Y. Zhang, Y. Li, S. Wang, R. Zuo, Chem. Eng. J. 398, (2020)

  37. G. Dong, H. Fan, Y. Jia, H. Liu, J. Mater. Sci. Mater. Electron. 31, 13620 (2020)

    Article  CAS  Google Scholar 

  38. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, J. Appl. Phys. 89, 5647 (2001)

    Article  CAS  Google Scholar 

  39. K.T.P. Seifert, W. Jo, J. Rödel, J. Am. Ceram. Soc. 93, 1392 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, Guangdong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Zheng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zheng, G. Tunning the dielectric and energy storage properties of high entropy ceramics (Bi0.2Na0.2K0.2La0.2Sr0.2)(Ti1-xScx)O3 by Sc-doping at B-site in perovskite structure. J Electroceram 49, 53–62 (2022). https://doi.org/10.1007/s10832-022-00292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00292-9

Keywords

Navigation