Skip to main content
Log in

Oxygen vacancy-induced Al2TiO5 –based multifunctional ceramic composites: Electrochemical and optical properties

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this study, Al2TiO5 –based multifunctional ceramics were prepared using the spark plasma sintering method within a temperature range of 1573–1773 K. The influence of the sintering temperature on the microstructure, phase composition, and electrochemical and optical properties of the Al2O3-TiO2-Al2TiO5 ceramics was evaluated. The results showed that ceramic composites sintered at T = 1773 K possessed the lowest porosity and optical reflectance (5%) in the visible, UV and infrared wavelength ranges. They were characterized by an average crystallite size of approximately 35 nm and the bandgap of 2.2 eV. Considerable changes in the electronic band structure and density of states inside the bandgap lead to enhanced charge carrier separation and reduced charge transfer resistance (RCT = -1.7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are not publicly available due to some restrictions applied by Isfahan University of Technology, but are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. F. Zhou, X. Ren, J. Environ. Sci. Heal. A. Toxic. Hazard. Subst. Environ. Eng. 55, 239 (2020)

  2. I. Kalaitzidou, A. Katsaounis, T. Norby, C.G. Vayenas, J. Catal. 331, 98 (2015)

    Article  CAS  Google Scholar 

  3. S. Anbarasu, S. Ilangovan, K. Usharani, A. Prabhavathi, M. Suganya, M. Karthika, C. Kayathiri, S. Balamurugan, A.R. Balu, J. Electron. Mater. 49, 869 (2020)

    Article  CAS  Google Scholar 

  4. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science. 331, 746 (2011)

  5. Y. Fang, N. Chen, G. Du, M. Zhang, X. Zhao, J. Wu, Ceram. Int. 45, 16504 (2019)

    Article  CAS  Google Scholar 

  6. Z. Harun, N.F. Ismail, N.A. Badarulzaman, Adv. Mater. Res. 488–489, 335 (2012)

    Article  Google Scholar 

  7. R.D. Skala, D. Li, I.M. Low, J. Eur. Ceram. Soc. 29, 67 (2009)

    Article  CAS  Google Scholar 

  8. N. Keyvani, A. Azarniya, H.R.M. Hosseini, M. Abedi, D. Moskovskikh, Mater. Chem. Phys. 223, 202 (2019)

    Article  CAS  Google Scholar 

  9. B. Zhao, X. Wen, M. Jiang, J. Wu, F. Lan, J. Wang, D. den Engelsen, G. Li, D. Gao, J. Mater. Chem. A 5, 3691 (2017)

    Article  CAS  Google Scholar 

  10. Y.H. Wang, G. Chen, Z.S. Wang, J.W. Liu, P.F. Luo, Ceram. Int. 44, 2077 (2018)

    Article  CAS  Google Scholar 

  11. S. Anbarasu, S. Ilangovan, V.S. Nagarethinam, J. Srivind, S. Balamurugan, M. Suganya, A.R. Balu, Nano-Struct. Nano-Objects. 17, 67 (2019)

    Article  CAS  Google Scholar 

  12. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science. 293, 269 (2001)

  13. L. Ge, C. Han, J. Liu, Appl. Catal. B. Environ. 108–109, 100 (2011)

    Article  Google Scholar 

  14. X. Xue, R. Chen, C. Yan, Y. Hu, W. Zhang, S. Yang, L. Ma, G. Zhu, Z. Jin, Nanoscale. 11, 10439 (2019)

    Article  CAS  Google Scholar 

  15. S. Wang, P. Chen, Y. Bai, J.H. Yun, G. Liu, L. Wang, Adv. Mater. 30, 1 (2018)

    Google Scholar 

  16. J. Di, C. Chen, C. Zhu, M. Ji, J. Xia, C. Yan, W. Hao, S. Li, H. Li, Z. Liu, Appl. Catal. B. Environ. 238, 119 (2018)

    Article  CAS  Google Scholar 

  17. G. Palareti, C. Legnani, B. Cosmi, E. Antonucci, N. Erba, D. Poli, S. Testa, A. Tosetto, Int. J. Lab. Hematol. 38, 42 (2016)

    Article  CAS  Google Scholar 

  18. Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002)

    Article  CAS  Google Scholar 

  19. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Adv. Eng. Mater. 16, 830 (2014)

    Article  CAS  Google Scholar 

  20. X. Chen, Y. Wu, Scr. Mater. 162, 14 (2019)

    Article  CAS  Google Scholar 

  21. H.-J. Lewerenz, Adv. Mater. 1, 96 (1989)

    Article  Google Scholar 

  22. C. Liu, C. Zhang, G. Yin, T. Zhang, W. Wang, G. Ou, H. Jin, Z. Chen, ACS. Appl. Mater. Interfaces. 13301 (2021)

  23. M. Hajihashemi, M. Shamanian, F. Ashrafizadeh, J. Electroceramics. (2021)

  24. Q. Liu, M. Qiu, L. Shen, C. Jiao, Y. Ye, D. Xie, C. Wang, M. Xiao, J. Zhao, Electron. 8 (2019)

  25. F. Kubelka, P., Munk, Z. Tech. Phys. 12, 593 (1931)

  26. D. Goldberg, Rev. Int. Des. Hautes. Temp. Des. Refract. 5(3), 81 (1968)

  27. R. Chaim, Z. Shen, M. Nygren, J. Mater. Res. 19, 2527 (2004)

    Article  CAS  Google Scholar 

  28. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41, 763 (2006)

    Article  CAS  Google Scholar 

  29. J. Pelleg, Diffusion in Ceramics (Springer International Publishing, Cham, 2016)

    Book  Google Scholar 

  30. B. Kim, K. Hiraga, K. Morita, H. Yoshida, Acta. Mater. 57, 1319 (2009)

    Article  CAS  Google Scholar 

  31. T. Xia, Y. Zhang, J. Murowchick, X. Chen, Catal. Today. 15 (2013)

  32. C.S. Chen, X.D. Xie, S.Y. Cao, T.G. Liu, Y.H. Tsang, Y. Xiao, Q.C. Liu, X.F. Yang, L. Gong, Phys. Scr. 90, 25806 (2015)

  33. D.C. Cronemeyer, Phys. Rev. 113 (1959)

  34. C.C.S.T. Bak, J. Nowotny, M. Rekas, Int. J. Hydrogen. Energy. 27, 991 (2002)

    Article  CAS  Google Scholar 

  35. W. Shockley, W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  CAS  Google Scholar 

  36. R. González, M.A. Monge, J.E.M. Santiuste, R. Pareja, Y. Chen, E. Kotomin, M.M. Kukla, A.I. Popov, Phys. Rev. B. Condens. Matter. Mater. Phys. 59, 4786 (1999)

  37. S. Wu, M.Y. Manuputty, Y. Sheng, H. Wang, Y. Yan, M. Kraft, R. Xu, Small. Methods. 5, 1 (2021)

    CAS  Google Scholar 

  38. F.J. Martin, G.T. Cheek, W.E. O’Grady, P.M. Natishan, Corros. Sci. 47, 3187 (2005)

    Article  CAS  Google Scholar 

  39. S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, New York, 1980)

    Book  Google Scholar 

  40. R. Halder, S. Bandyopadhyay, Mater. Chem. Phys. 228, 51 (2019)

    Article  CAS  Google Scholar 

  41. H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita, M. Fuji, Scr. Mater. 124, 59 (2016)

    Article  CAS  Google Scholar 

  42. J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, J. Phys. Chem. C 111, 693 (2007)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hajihashemi.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajihashemi, M., Shamanian, M. & Ashrafizadeh, F. Oxygen vacancy-induced Al2TiO5 –based multifunctional ceramic composites: Electrochemical and optical properties. J Electroceram 48, 169–182 (2022). https://doi.org/10.1007/s10832-022-00284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00284-9

Keywords

Navigation