Skip to main content
Log in

Nanocomposites of transition metals tungstate for potential applications in magnetic and microwave devices

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Ni2-xCox(WO4)2 and Ni2-xMnx(WO4)2 (x = 0.0, 0.50, 1.0, 1.50 and 2.0) nanocomposites have been synthesized by facile hydrothermal method. The synthesized samples have been characterized by powder XRD and Scanning Electron Microscopy to analyze the structure and morphology. Structural analysis has revealed the single phase formation with wolframite monoclinic system for NiWO4 samples. The calculated crystallite size ranges from 6 to 40 nm for the nanocomposites. Magnetic and dielectric parameters have also been studied. Magnetic susceptibility measurements of each sample have been carried out at room temperature (312 K) by using Sherwood magnetometer. A decrease in susceptibility values has been observed by increase in the concentration of manganese or cobalt in nickel tungstate leading to antiferromagnetic behavior. Dielectric measurements in the frequency range of 6 kHz to 1 MHz have been calculated. The analysis showed that dielectric parameters decrease with increase in frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Rabizadeh, S.R. Allahkaram, A. Zarebidaki, Mater. Des. 31, 3174 (2010)

    Article  Google Scholar 

  2. C.A. Kumar, D. Pamu, J. Electron. Mater. 46, 917 (2017)

    Article  Google Scholar 

  3. X. Lu, Y. Zheng, Q. Huang, W. Xiong, J. Electron. Mater. 44, 4243 (2015)

    Article  Google Scholar 

  4. A. Kaveh, C. Ken, RSC Adv. 6, 16301 (2016)

    Article  Google Scholar 

  5. G. Tegard, Nanotechnology: the technology for twenty-first century. Forsight 6, 364 (2004)

    Article  Google Scholar 

  6. J.H. Ryu, J. Yoon, C.S. Lim, W. C. Oh and K. B. Shim. Ceram. Int. 31, 883 (2005)

    Article  Google Scholar 

  7. R.C. Pullar, S. Farrah, N.M. Alford, J. Eur. Ceram. Soc. 27, 1059 (2007)

    Article  Google Scholar 

  8. S. Saranya, S.T. Senthilkumar, K.V. Sankar, et al., J. Electroceram. 28, 220 (2012)

    Article  Google Scholar 

  9. R. Sundaram, K.S. Nagaraja, Mater. Res. Bull. 39, 581 (2004)

    Article  Google Scholar 

  10. D.L. Stern, R.K. Grasselli, J. Catal. 167, 570 (1997)

    Article  Google Scholar 

  11. L.F. Johnson, G.D. Boyd, K. Nassau, R.R. Soden, Phys. Rev. 126, 1406 (1962)

    Article  Google Scholar 

  12. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 498, 113 (2010)

    Article  Google Scholar 

  13. C. Yu, C.Y. Jimmy, Mater. Sci. Eng. B 164, 16 (2009)

    Article  Google Scholar 

  14. H.Y. He, J.F. Huang, L.Y. Cao, J. P. Wu. Desalination 252, 66 (2010)

    Article  Google Scholar 

  15. A. Dodd, A. McKinley, A. Tsuzuki, M. Saunders, J. Eur. Ceram. Soc. 29, 139 (2009)

    Article  Google Scholar 

  16. G. Huang, Y. Zhu, Mater. Sci. Eng. B 139, 201 (2007)

    Article  Google Scholar 

  17. J.M. Quintana-Melgoza, J. Cruz-Reyes, M. Avalos-Borja, Mater. Lett. 47, 314 (2001)

    Article  Google Scholar 

  18. D. Chen, G. Shen, K. Tang, H. Zheng, Y. Qian, Mater. Res. Bull. 38, 1783 (2003)

    Article  Google Scholar 

  19. Z. Song, J. Ma, H. Sun, W. Wang, Y. Sun, L. Sun, Z. Liu, C. Gao, Ceram. Int. 35, 2675 (2009)

    Article  Google Scholar 

  20. A.L.M. De Oliveira, J.M. Ferreira, M.R. Silva, S.C. de Souza, F.T.G. Vieira, E. Longo, A.G. Souza, I.M. Santos, J. Therm. Anal. Calorim. 97, 167 (2009)

    Article  Google Scholar 

  21. J.H. Ryu, J.W. Yoon, C.S. Lim, K.B. Shim, Key Eng. Mater. 317, 223 (2006)

    Article  Google Scholar 

  22. A. Dias, V.S. Ciminelli, J. Eur. Ceram. Soc. 21, 2061 (2001)

    Article  Google Scholar 

  23. C.P. Symth, Acta Cryst 9, 838–839 (1956)

    Article  Google Scholar 

  24. A. Chelkowski, Dielectric Physic (Elsevier, Amsterdam, 1980), pp. 1–390

    Google Scholar 

  25. V.V. Daniel, Dielectric relaxation (Academic Press, London, 1967), pp. 1–281

    Google Scholar 

  26. R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, R.H.Y. Subban, Mater. Express 6, 149–160 (2016)

    Article  Google Scholar 

  27. Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Y.L. Chai, J. Alloys Compd. 421(1–2), 240–246 (2006)

    Article  Google Scholar 

  28. Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Y.L. Chai, J. Alloys Compd. 421, 240 (2006)

    Article  Google Scholar 

  29. A. Bashir, A. Mahmood, M.N. Ashiq, M.A. Malana, M. Najam-Ul-Haq, J. Alloys Compd. 590, 193 (2014)

    Article  Google Scholar 

  30. C.G. Koops, Phys. Rev. 83(1), 121–124 (1951)

    Article  Google Scholar 

  31. A. Kaveh, F.S. Omor, B.M. Patrick, M. Evgeny, S. Susanne Appl, Phys. Lett. 110, 062104 (2017)

    Google Scholar 

  32. A. Kaveh, S. Susanne, Phys. Rev. Lett. 118, 236803 (2017)

    Article  Google Scholar 

  33. J.Y. Kim, H.S. Jung, J.H. No, J.R. Kim, K.S. Hong, J. Electroceram. 16, 447 (2006)

    Article  Google Scholar 

  34. F. Jin, H. Tong, L. Shen, K. Wang, P.K. Chu, Mater. Chem. Phys. 100, 31 (2006)

    Article  Google Scholar 

  35. R. Gupta, S.C.K. Misra, B.D. Malhotra, N.N. Beladakere, S. Chandra, Appl. Phys. Lett. 58, 51 (1991)

    Article  Google Scholar 

  36. R.J. Cava, J. Mater. Chem. 11, 54 (2001)

    Article  Google Scholar 

  37. Z.K. Heiba, M.B. Mohamed, H. Fuess, Mater. Res. Bull. 47, 4278 (2012)

    Article  Google Scholar 

  38. S. Zhuang, X. Xu, Y. Pang, H. Li, B. Yu, J. Hu, J. Magn. Magn. Mater. 327, 24 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Athar or Muhammad Asim Farid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, F., Athar, M. & Farid, M.A. Nanocomposites of transition metals tungstate for potential applications in magnetic and microwave devices. J Electroceram 40, 300–305 (2018). https://doi.org/10.1007/s10832-018-0130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0130-5

Keywords

Navigation