Skip to main content
Log in

Structural, optical, and magnetic properties of NiO/NiFe2O4 nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the synthesis of NiO/NiFe2O4 nanocomposites following the thermal annealing-assisted simple wet chemical route. XRD and Raman characterizations confirm the existence of both NiO and NiFe2O4 in forming the composite samples. The 2 M Raman mode of NiO in the composite sample is decreased with increasing the annealing temperature from 500 to 600 °C, indicating the suppression of antiferromagnetic (AFM) correlations which could be due to the disorder induced by defects and the presence of distinct NiFe2O4 phase. Morphological features signify the thermal annealing-induced shape transformation along with the reduction in grain agglomeration. Optical characterization indicated that the decrease of Urbach energy upon increasing annealing temperature ascribed to the decrease of structural disorder in the sample. Photoluminescence study revealed the shift of the color emission from near blue to green region with increasing annealing temperature from 500 to 600 °C. The presence of hysteresis with the perseverance of unsaturation nature indicated the occurrence of weak ferromagnetism in the AFM background of NiO matrix. The magnetic analysis employing modified Bloch’s function further supports the nanocomposite system. The persistence of exchange bias field, saturation magnetization, and anisotropy constant at 300 K in both the samples could be an indication for the usefulness of these materials for realizing the thermal stable magnetic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data will be available on request.

References

  1. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Nature 423, 850 (2003)

    ADS  Google Scholar 

  2. B. Dieny, V.S. Speriosu, S. Metin, S.S.P. Parkin, B.A. Gurney, P. Baumgart, D.R. Wilhoit, J. Appl. Phys. 69, 4774 (1991)

    ADS  Google Scholar 

  3. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher, J. Appl. Phys. 85, 5828 (1999)

    ADS  Google Scholar 

  4. J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M. Bibes, A. Barthélémy, Nano Lett. 12, 1141 (2012)

    ADS  Google Scholar 

  5. P. Maltoni, T. Sarkar, G. Varvaro, G. Barucca, S.A. Ivanov, D. Peddis, R. Mathieu, J. Phys. Appl. Phys. 54, 124004 (2021)

    ADS  Google Scholar 

  6. S. Behrens, I. Appel, Curr. Opin. Biotechnol. 39, 89 (2016)

    Google Scholar 

  7. B.B. Zhang, J.C. Xu, P.F. Wang, Y.B. Han, B. Hong, H.X. Jin, D.F. Jin, X.L. Peng, J. Li, J. Gong, H.L. Ge, Z.W. Zhu, X.Q. Wang, J. Alloys Compd. 662, 348 (2016)

    Google Scholar 

  8. D. Paul Joseph, C. Venkateswaran, R. Selva Vennila, Adv. Mater. Sci. Eng. 2010, 1 (2010)

    Google Scholar 

  9. S. Jena, D.K. Mishra, S. Mondal, S. Chakravarty, S. Hussain, P. Mallick, Appl. Phys. A 127, 975 (2021)

    ADS  Google Scholar 

  10. S. Hasan, R.A. Mayanovic, M. Benamara, MRS Adv. 2, 3465 (2017)

    Google Scholar 

  11. T. Yu, X.K. Ning, W. Liu, J.N. Feng, D. Kim, C.J. Choi, Z.D. Zhang, J. Magn. Magn. Mater. 385, 230 (2015)

    ADS  Google Scholar 

  12. A. Saha, S. Sohoni, R. Viswanatha, J. Phys. Chem. C 123, 2421 (2019)

    Google Scholar 

  13. J. Sort, S. Suriñach, J.S. Muñoz, M.D. Baró, J. Nogués, G. Chouteau, V. Skumryev, G.C. Hadjipanayis, Phys. Rev. B 65, 174420 (2002)

    ADS  Google Scholar 

  14. M.T. Hutchings, E.J. Samuelsen, Phys. Rev. B 6, 3447 (1972)

    ADS  Google Scholar 

  15. B. Negulescu, L. Thomas, Y. Dumont, M. Tessier, N. Keller, M. Guyot, J. Magn. Magn. Mater. 242–245, 529 (2002)

    ADS  Google Scholar 

  16. U.K. Panigrahi, P.K. Das, P.D. Babu, N.C. Mishra, P. Mallick, S.N. Appl, Science 1, 438 (2019)

    Google Scholar 

  17. X. Zhang, L. Li, Y. Zeng, J. Yuan, Y. Yu, X. Zhu, Z. Xiong, H. Yu, Y. Xie, J. Alloys Compd. 822, 153672 (2020)

    Google Scholar 

  18. Z. Tian, L. Xu, Y. Gao, S. Yuan, Z. Xia, Appl. Phys. Lett. 111, 182406 (2017)

    ADS  Google Scholar 

  19. Z.M. Tian, S.L. Yuan, L. Liu, S.Y. Yin, L.C. Jia, P. Li, S.X. Huo, J.Q. Li, J. Phys. Appl. Phys. 42, 035008 (2009)

    ADS  Google Scholar 

  20. P. Mallick, C. Rath, R. Biswal, N.C. Mishra, Indian J. Phys. 83, 517 (2009)

    ADS  Google Scholar 

  21. X. Liu, W.-L. Gao, Mater. Manuf. Process. 27, 905 (2012)

    Google Scholar 

  22. Z.M. Tian, S. Huang, Y. Qiu, S.L. Yuan, Y.Y. Wu, L. Li, J. Appl. Phys. 113, 143906 (2013)

    ADS  Google Scholar 

  23. A.P. Douvalis, L. Jankovic, T. Bakas, J. Phys. Condens. Matter 19, 436203 (2007)

    ADS  Google Scholar 

  24. R. Pradeep, A.C. Gandhi, Y. Tejabhiram, I.K.M. Mathar Sahib, Y. Shimura, L. Karmakar, D. Das, S.Y. Wu, Y. Hayakawa, Mater. Res. Express 4, 096103 (2017)

    ADS  Google Scholar 

  25. N. Ahammed, M. Mehedi Hassan, Adv. Mater. Lett. 10, 746 (2019)

    Google Scholar 

  26. B.D. Culity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hal, New York, 2001)

    Google Scholar 

  27. H. Abbas, K. Nadeem, A. Hassan, S. Rahman, H. Krenn, Optik 202, 163637 (2020)

    ADS  Google Scholar 

  28. S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Mater. Sci. Pol. 32, 98 (2014)

    ADS  Google Scholar 

  29. R.W. Cairns, E. Ott, J. Am. Chem. Soc. 55, 527 (1933)

    Google Scholar 

  30. P.R. Graves, C. Johnston, J.J. Campaniello, Mater. Res. Bull. 23, 1651 (1988)

    Google Scholar 

  31. J. Dünnwald, A. Otto, Corros. Sci. 29, 1167 (1989)

    Google Scholar 

  32. Y.P. Yew, K. Shameli, M. Miyake, N.B.B. Ahmad Khairudin, S.E.B. Mohamad, H. Hara, M.F.B. Mad Nordin, K.X. Lee, IEEE Trans. Nanotechnol. 16, 1047 (2017)

    ADS  Google Scholar 

  33. Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Proc. Eng. 27, 632 (2012)

    Google Scholar 

  34. . S.S. Pati, J. Philip, in Int. Conf. Nanosci. Eng. Technol. ICONSET 2011 (2011), pp. 323–325

  35. U. Topal, M.A. Aksan, J. Magn. Magn. Mater. 406, 123 (2016)

    ADS  Google Scholar 

  36. K.N. Patel, M.P. Deshpande, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Mater. Res. Bull. 106, 187 (2018)

    Google Scholar 

  37. A. Sunny, K. Balasubramanian, J. Phys. Chem. C 124, 12636 (2020)

    Google Scholar 

  38. U.K. Panigrahi, P.K. Das, R. Biswal, V. Sathe, P.D. Babu, A. Mitra, P. Mallick, J. Alloys Compd. 833, 155050 (2020)

    Google Scholar 

  39. O.N. Shebanova, P. Lazor, J. Solid State Chem. 174, 424 (2003)

    ADS  Google Scholar 

  40. P. Ravikumar, B. Kisan, A. Perumal, AIP Adv. 5, 087116 (2015)

    ADS  Google Scholar 

  41. H. Abbas, K. Nadeem, N. Saeed, A. Hassan, S. Rahman, H. Krenn, I. Letofsky-Papst, J. Appl. Phys. 125, 144305 (2019)

    ADS  Google Scholar 

  42. R.E. Dietz, G.I. Parisot, A.E. Meixner, Phys. Rev. B 4, 2302 (1971)

    ADS  Google Scholar 

  43. P. Mallick, C. Rath, A. Rath, A. Banerjee, N.C. Mishra, Solid State Commun. 150, 1342 (2010)

    ADS  Google Scholar 

  44. U.K. Panigrahi, V. Sathe, P.D. Babu, A. Mitra, P. Mallick, Nano Express 1, 020009 (2020)

    ADS  Google Scholar 

  45. H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astron. 19, 26 (2013)

    Google Scholar 

  46. P. Mallick, S. Sahu, Nanosci. Nanotechnol. 2, 71 (2012)

    Google Scholar 

  47. B. Abay, H.S. Güder, H. Efeoğlu, Y.K. Yoğurtçu, J. Phys. Chem. Solids 62, 747 (2001)

    ADS  Google Scholar 

  48. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981)

    ADS  Google Scholar 

  49. S.K. Satpathy, U.K. Panigrahi, S.K. Panda, R. Biswal, W. Luyten, P. Mallick, J. Alloys Compd. 865, 158937 (2021)

    Google Scholar 

  50. A. Hafdallah, F. Ynineb, M.S. Aida, N. Attaf, J. Alloys Compd. 509, 7267 (2011)

    Google Scholar 

  51. P. Mallick, Indian J. Pure Appl. Phys. 55, 187 (2017)

    Google Scholar 

  52. B. Karthikeyan, T. Pandiyarajan, S. Hariharan, M.S. Ollakkan, CrystEngComm 18, 601 (2016)

    Google Scholar 

  53. M. Abdur Rahman, R. Radhakrishnan, S.N. Appl, Science 1, 221 (2019)

    Google Scholar 

  54. S.J. Musevi, A. Aslani, H. Motahari, H. Salimi, J. Saudi Chem. Soc. 20, 245 (2016)

    Google Scholar 

  55. A. Gandhi, S. Wu, Nanomaterials 7, 231 (2017)

    Google Scholar 

  56. M. Hjiri, N.H. Alonizan, M.M. Althubayti, S. Alshammari, H. Besbes, M.S. Aida, J. Mater. Sci. Mater. Electron. 30, 15379 (2019)

    Google Scholar 

  57. P. Mallick, N.C. Mishra, Am. J. Mater. Sci. 2, 66 (2012)

    Google Scholar 

  58. A.C. Gandhi, J.G. Lin, J. Magn. Magn. Mater. 424, 221 (2017)

    ADS  Google Scholar 

  59. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)

    ADS  Google Scholar 

  60. S. Bhanuchandar, G. Vinothkumar, P. Arunkumar, M. Sribalaji, A.K. Keshri, K. Suresh Babu, J. Alloys Compd. 780, 256 (2019)

    Google Scholar 

  61. J. Wang, J. Cai, Y.-H. Lin, C.-W. Nan, Appl. Phys. Lett. 87, 202501 (2005)

    ADS  Google Scholar 

  62. S.P. Tsopoe, C. Borgohain, J.P. Borah, RSC Adv. 11, 20806 (2021)

    ADS  Google Scholar 

  63. Z. Alborzi Avanaki, A. Hassanzadeh, J. Theor. Appl. Phys. 7, 19 (2013)

    ADS  Google Scholar 

  64. M.A. Valente, S.K. Mendiratta, J. Non-Cryst, Solids 247, 26 (1999)

    Google Scholar 

  65. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 4th edn (1980)

  66. J.M.D. Coey, M. Venkatesan, H. Xu, in Funct. Met. Oxides. ed. by S.B. Ogale, T.V. Venkatesan, M.G. Blamire (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013), pp.1–49

    Google Scholar 

  67. G.H. McCabe, T. Fries, M.T. Liu, Y. Shapira, L.R. Ram-Mohan, R. Kershaw, A. Wold, C. Fau, M. Averous, E.J. McNiff, Phys. Rev. B 56, 6673 (1997)

    ADS  Google Scholar 

  68. A. Zunger, S. Lany, H. Raebiger, Physics 3, 53 (2010)

    Google Scholar 

  69. C. Chiorescu, J.L. Cohn, J.J. Neumeier, Phys. Rev. B 76, 020404 (2007)

    ADS  Google Scholar 

  70. T. Dietl, J. Spalek, L. Świerkowski, Phys. Rev. B 33, 7303 (1986)

    ADS  Google Scholar 

  71. T. Bora, B. Samantaray, S. Mohanty, S. Ravi, IEEE Trans. Magn. 47, 3991 (2011)

    ADS  Google Scholar 

  72. B. Pal, P.K. Giri, J. Appl. Phys. 108, 084322 (2010)

    ADS  Google Scholar 

  73. A. Franco, F.C. e Silva, Appl. Phys. Lett. 96, 172505 (2010)

    ADS  Google Scholar 

  74. S. Chikazumi, C.D. Graham, S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Clarendon Press, Oxford, 1997)

    MATH  Google Scholar 

  75. B.K. Chatterjee, C.K. Ghosh, K.K. Chattopadhyay, J. Appl. Phys. 116, 153904 (2014)

    ADS  Google Scholar 

  76. B. Sahu, U.K. Panigrahi, C.J. Sheppard, A.R.E. Prinsloo, P. Mohanty, P. Mallick, Mater. Chem. Phys. 302, 127759 (2023)

    Google Scholar 

  77. Y. Liu, B. Wang, Q. Zhan, Z. Tang, H. Yang, G. Liu, Z. Zuo, X. Zhang, Y. Xie, X. Zhu, B. Chen, J. Wang, R.-W. Li, Sci. Rep. 4, 6615 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

PM acknowledges the DST, Govt. of Odisha for providing financial support to carry out this work. BS acknowledges OURIIP, OSHEC, Govt. of Odisha for financial support. The part of this work (Magnetization, FESEM and Raman Characterization) has been carried out at UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu, Kalpakkam, Tamil Nadu-603104, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mallick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, B., Panigrahi, U.K., Chakravarty, S. et al. Structural, optical, and magnetic properties of NiO/NiFe2O4 nanocomposites. Appl. Phys. A 129, 584 (2023). https://doi.org/10.1007/s00339-023-06847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06847-z

Keywords

Navigation