Skip to main content

Advertisement

Log in

Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

All-solid-state battery performance is strongly dependent on effective charge transfer at both 1) the interface of the active particles and 2) through the interstitial regions of composite cathode. Design of the composite cathode is further complicated by the necessity to limit the amount of conductor additives in order to attain high energy density. These requirements present a difficult design challenge for the composite cathode. Here we investigate the extent to which the mixing order of the three components in the composite cathode impacts the charge transfer and cell performance. We test a total of 5 mixing protocols and find that the initial discharge capacity and the rate capability varies significantly with mixing order. It is shown that the location of the electron conductive carbon is particularly critical for cell performance due to its limited quantity in the composite cathode. Mixing protocols that concentrate the carbon at the active particle interface lowers the interfacial resistance leading to higher discharge capacity. Mixing protocols that place more carbon in the interstitial regions improves the electron path conductivity and is found to correlate with higher rate capability. Based on these results we demonstrate a mixing protocol that achieves both higher discharge capacity and better rate performance for all-solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)

    Article  Google Scholar 

  2. J. Kalhoff, G.G. Esthete, D. Bresser, S. Passerine, ChemSusChem 8, 2154–2175 (2015)

    Article  Google Scholar 

  3. Y. Wang, W.H. Zhong, ChemElectroChem 2, 22–36 (2015)

    Article  Google Scholar 

  4. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson, Solid State Ionics 53, 647–654 (1992)

    Article  Google Scholar 

  5. J.G. Kim, B. Son, S. Mukherjee, N. Schubert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park, J. Power Sources 282, 299–322 (2015)

    Article  Google Scholar 

  6. E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 40, 2525–2540 (2011)

    Article  Google Scholar 

  7. J.L. Souquet, E. Robinel, B. Barrau, M. Ribes, Solid State Ion. 3-4, 317–321 (1981)

    Article  Google Scholar 

  8. J.P. Malugani, G. Robert, Solid State Ionics 1, 519–523 (1980)

    Article  Google Scholar 

  9. A. Hayashi, S. Hama, F. Mizuno, K. Tadanaga, T. Minami, M. Tatsumisago, Solid State Ionics 175, 683–686 (2004)

    Article  Google Scholar 

  10. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 10, 682–686 (2011)

    Article  Google Scholar 

  11. Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, Energy Environ. Sci. 7, 627–631 (2014)

    Article  Google Scholar 

  12. J. Kim, M. Eom, S. Noh, D. Shin, J. Power Sources 244, 476–481 (2013)

    Article  Google Scholar 

  13. S. Choi, M. Eom, C. Park, S. Son, G. Lee, D. Shin, Ceram. Int. 42, 6738–6742 (2016)

    Article  Google Scholar 

  14. J. Kim, M. Eom, S. Noh, D. Shin, Electron. Mater. Lett. 8, 209–213 (2012)

    Article  Google Scholar 

  15. M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto, T. Minami, Solid State Ionics 154, 635–640 (2002)

    Article  Google Scholar 

  16. M. Eom, J. Kim, S. Noh, D. Shin, J. Power Sources 284, 44–48 (2015)

    Article  Google Scholar 

  17. J. Kim, M. Kim, S. Noh, G. Lee, D. Shin, Ceram. Int. 42, 2140–2146 (2016)

    Article  Google Scholar 

  18. S. Noh, W.T. Nichols, C. Park, D. Shin, Ceram. Int. 43, 15952–15958 (2017)

    Article  Google Scholar 

  19. S. Noh, J. Kim, M. Eom, D. Shin, Ceram. Int. 39, 8453–8458 (2013)

    Article  Google Scholar 

  20. J. Jamnik, G. Miran, MRS Bull. 34, 942–948 (2009)

    Article  Google Scholar 

  21. A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, J. Electrochem. Soc. 156, A27–A32 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dual Use Technology Program of the Institute of Civil Military Technology Cooperation granted financial resources from the Ministry of Trade, Industry & Energy and Defense Acquisition Program Administration (17-CM-EN-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwook Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, S., Nichols, W.T., Cho, M. et al. Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte. J Electroceram 40, 293–299 (2018). https://doi.org/10.1007/s10832-018-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0129-y

Keywords

Navigation