Skip to main content
Log in

Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Atomic switches are nanoionic devices that are operated by controlling redox reactions and the local migration of metal ions in solids. The essential mechanism is the growth and shrinkage of a metal filament formed between two electrodes, resulting in repeatable resistive switching between high-resistance and low-resistance states, which can be used for next-generation nonvolatile memories. This review focuses on the operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer as an ion-conducting matrix. First, we describe the operating mechanism of a two-terminal atomic switch based on nucleation theory and present the results of temperature dependence and switching speeds to determine the validity of our switching model. Then, we discuss the effects that moisture absorption in the oxide matrix has on the fundamental processes and switching behavior in order to elucidate the importance of the porosity of the oxide matrix. Finally, we demonstrate a three-terminal atomic switch and describe the impact of the anode material or metal-ion species. These findings will contribute to the development of next-generation logic circuits with low-voltage operation and low-power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.E. Moore, Electronics Magazine 38 (1965)

  2. International Technology Roadmap for Semiconductors, ITRS 2013 edn (2013), http://www.itrs.net/2013-itrs.html

  3. G. Atwood, IEEE Trans. Device Mater. Relat. 4, 301 (2004)

    Article  Google Scholar 

  4. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  Google Scholar 

  5. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  6. H. Nili, S. Walia, S. Balendhran, D. Strukov, M. Bhaskaran, S. Sriram, Adv. Funct. Mater. 24, 6741 (2014)

    Article  Google Scholar 

  7. F. Masserschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Adv. Funct. Mater. 24, 7448 (2014)

    Article  Google Scholar 

  8. M. Kubicek, R. Schmitt, F. Masserchmitt, J.L.M. Rupp, ACS Nano 9, 10737 (2015)

    Article  Google Scholar 

  9. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)

    Article  Google Scholar 

  10. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Nat. Mater. 10, 591 (2011)

    Article  Google Scholar 

  11. T. Ohno, T. Hasegawa, A. Nayak, T. Tsuruoka, J.K. Gimzewski, M. Aono, Appl. Phys. Lett. 99, 203108 (2011)

    Article  Google Scholar 

  12. T. Hasegawa, K. Terabe, T. Tsuruoka, M. Aono, Adv. Mater. 24, 252 (2012)

    Article  Google Scholar 

  13. A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J.K. Gimzewski, M. Aono, Adv. Funct. Mater. 22, 3606 (2012)

    Article  Google Scholar 

  14. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono, Appl. Phys. Lett. 82, 3032 (2003)

    Article  Google Scholar 

  15. C.H. Liang, K. Terabe, T. Hasegawa, R. Negishi, T. Tamura, M. Aono, Small 1, 971 (2005)

    Article  Google Scholar 

  16. C.H. Liang, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 18, 485202 (2007)

    Article  Google Scholar 

  17. M. Morales-Masis, S.J. van der Molen, W.T. Fu, M.B. Haselberth, J.M. van Ruithenbeek, Nanotechnology 20, 095710 (2009)

    Article  Google Scholar 

  18. T. Tsuchiya, Y. Oyama, S. Miyoshi, S. Yamaguchi, Appl. Phys. Express 2, 055002 (2009)

    Article  Google Scholar 

  19. M.N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005)

    Article  Google Scholar 

  20. S. Tappertzhofen, I. Valov, R. Waser, Nanotechnology 23, 145703 (2012)

    Article  Google Scholar 

  21. H.X. Duo, L.G. Gao, Y.D. Xia, K. Jiang, B. Xu, Z.G. Liu, J. Yin, Appl. Phys. Lett. 94, 153504 (2009)

    Article  Google Scholar 

  22. T. Hasegawa, K. Terabe, T. Sakamoto, M. Aono, MRS Bull. 34, 929 (2009)

    Article  Google Scholar 

  23. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Nanotechnology 22, 254002 (2011)

    Article  Google Scholar 

  24. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Appl. Phys. Lett. 91, 092110 (2007)

    Article  Google Scholar 

  25. C. Schindler, M. Weides, M.N. Kozichi, R. Waser, Appl. Phys. Lett. 92, 122910 (2008)

    Article  Google Scholar 

  26. C. Schindler, G. Staikov, R. Waser, Appl. Phys. Lett. 94, 072109 (2009)

    Article  Google Scholar 

  27. M. Haemori, T. Nagata, T. Chikyo, Appl. Phys. Express 2, 061401 (2009)

    Article  Google Scholar 

  28. M.N. Kozicki, C. Gapalan, M. Balakrishnan, M. Mitkova, IEEE Trans. Nanotechnol. 5535 (2006)

  29. W. Gua, M. Liu, S. Long, Q. Liu, W. Wang, Appl. Phys. Lett. 93, 223506 (2008)

    Article  Google Scholar 

  30. X.B. Yan, K. Li, J. Yin, Y.D. Xia, H.X. Guo, L. Chen, Z.G. Liu, Solid State Lett. 13, H87 (2010)

    Article  Google Scholar 

  31. T. Tsuruoka, I. Valov, S. Tappertzhofen, J. van den Hurk, T. Hasegawa, R. Waser, M. Aono, Adv. Funct. Mater. 25, 6374 (2015)

    Article  Google Scholar 

  32. T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 21, 425205 (2010)

    Article  Google Scholar 

  33. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Nat. Commun. 3, 732 (2012)

    Article  Google Scholar 

  34. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Nat. Commun. 5, 4232 (2014)

    Google Scholar 

  35. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 24, 1844 (2012)

    Article  Google Scholar 

  36. X. Tian, S. Yang, M. Zeng, L. Wang, J. Wei, Z. Xu, W. Wang, X. Bai, Adv. Mater. 26, 3649 (2014)

    Article  Google Scholar 

  37. T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 22, 254013 (2011)

    Article  Google Scholar 

  38. W.D. Kingley, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics, 2nd edn. (Wiley, New York, 1976)

    Google Scholar 

  39. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  40. A. Milchev, Electrocrystallization: fundamentals of nucleation and growth (Kluwer Academic, Boston, 2002)

    Google Scholar 

  41. N.F. Mott, R.W. Gurny, Electronic processes in ionic crystals (Oxford University Press, Oxford, 1948)

    Google Scholar 

  42. J.J. O’wyer, The theory of electrical conduction and breakdown in solid dielectrics (Clarendon, Oxford, 1973)

    Google Scholar 

  43. Y. Sato, K. Kinoshita, M. Aoki, Y. Sugiyama, Appl. Phys. Lett. 90, 033503 (2007)

    Article  Google Scholar 

  44. I. Valov, G. Staikov, J. Solid State Electrochem. 17, 365 (2013)

    Article  Google Scholar 

  45. I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Nat. Mater. 11, 530 (2012)

    Article  Google Scholar 

  46. M.G. Gao, Y.S. Chen, J.R. Sun, D.S. Shang, L.F. Liu, J.F. Kang, B.G. Shen, Appl. Phys. Lett. 101, 203502 (2012)

    Article  Google Scholar 

  47. P. Shestha, A. Ochia, K.P. Cheung, J.P. Campbell, H. Braumgart, G. Harris, Electrochem. Solid-State Lett. 15, H173 (2012)

  48. D. Ielmini, C. Cagli, F. Nardi, Appl. Phys. Lett. 94, 063511 (2009)

    Article  Google Scholar 

  49. J. Shin, J. Park, J. Lee, S. Park, S. Kim, W. Lee, I. Kim, D. Lee, H. Hwang, IEEE Electron Device Lett. 32, 958 (2011)

    Article  Google Scholar 

  50. M. Noman, A.A. Sharma, Y.M. Lu, M. Skowronski, P.A. Salvador, J.A. Bain, Appl. Phys. Lett. 102, 023507 (2012)

    Article  Google Scholar 

  51. T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, M. Aono, AIP Adv. 3, 032114 (2013)

    Article  Google Scholar 

  52. T. Tsuruoka, T. Hasegawa, M. Aono, Mater. Res. Soc. Symp. Proc. 1729 (2015)

  53. A.C. Torrezan, J.P. Strachan, G. Modeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 485203 (2011)

    Article  Google Scholar 

  54. E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical phase formation and growth (VCH, Wheinhein, 1996)

    Book  Google Scholar 

  55. R. Soni, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, IEEE Trans. Electron Devices 56, 1040 (2009)

    Article  Google Scholar 

  56. J.M. Ngaruiya, S. Venkataraj, R. Drese, O. Kappertz, T.P.L. Pedersen, M. Wuttig, Phys. Status Solidi A 198, 99 (2003)

    Article  Google Scholar 

  57. T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, M. Aono, Adv. Funct. Mater. 22, 70 (2012)

    Article  Google Scholar 

  58. A.J. Bard, R. Persons, J. Jordan, Standard potentials in aqueous solution (Marcel Dekker, New York, 1985)

    Google Scholar 

  59. N. Banno, T. Sakamoto, N. Iguchi, S. Sunamura, K. Terabe, T. Hasegawa, M. Aono, IEEE Trans. Electron. Devices 55, 3283 (2008)

    Article  Google Scholar 

  60. T. Tsuruoka, I. Valov, C. Mannequin, T. Hasegawa, R. Waser, M. Aono, Jpn. J. Appl. Phys. 55, 06GJ09 (2016)

    Article  Google Scholar 

  61. C. Cao, Y. He, J. Torras, E. Deumens, S.B. Trickey, H. Cheng, J. Chem. Phys. 126, 211101 (2007)

    Article  Google Scholar 

  62. S. Tappertzhofen, M. Hempel, I. Valov, R. Waser, Mater. Res. Soc. Symp. Proc. 1330 (2011)

  63. C.-N. Xu, K. Miyazaki, T. Watanabe, Sensors Actuators B Chem. 46, 87 (1998)

    Article  Google Scholar 

  64. F. Messerschmitt, M. Kubiecek, J.M. Rupp, Adv. Funct. Mater. 25, 5117 (2015)

    Article  Google Scholar 

  65. C. Mannequin, T. Tsuruoka, T. Hasegawa, M. Aono, Appl. Surf. Sci. 385, 426 (2016)

    Article  Google Scholar 

  66. C. Mannequin, T. Tsuruoka, T. Hasegawa, M. Aono, Jpn. J. Appl. Phys. 55, 06GG08 (2016)

    Article  Google Scholar 

  67. J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)

    Article  Google Scholar 

  68. F.-Q. Xie, L. Nittler, C. Obemair, T. Schmmel, Phys. Rev. Lett. 93, 128303 (2004)

    Article  Google Scholar 

  69. N. Banno, T. Sakamoto, N. Iguchi, H. Kawaura, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, M. Aono, IEICE Trans. Electron. E89-C, 1492 (2006)

    Article  Google Scholar 

  70. T. Sakamoto, N. Iguchi, M. Aono, Appl. Phys. Lett. 96, 252104 (2010)

    Article  Google Scholar 

  71. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  Google Scholar 

  72. T. Hasegawa, Y. Itoh, H. Tanaka, T. Hino, T. Tsuruoka, K. Terabe, H. Miyazaki, K. Tsukagoshi, T. Ogawa, S. Yamaguchi, M. Aono, Appl. Phys. Express 4, 15204 (2011)

    Article  Google Scholar 

  73. Q. Wang, Y. Itoh, T. Tsuruoka, M. Aono, T. Hasegawa, Adv. Mater. 27, 6029 (2015)

    Article  Google Scholar 

  74. Q. Wang, Y. Itoh, T. Hasegawa, T. Tsuruoka, S. Yamaguchi, S. Watanabe, T. Hiramoto, M. Aono, Appl. Phys. Lett. 102, 233508 (2013)

    Article  Google Scholar 

  75. T. Tsuruoka, T. Hasegawa, K. Terabe, M. Aono, Nanotechnology 23, 435705 (2012)

    Article  Google Scholar 

  76. T. Tsuruoka, T. Hasegawa, K. Terabe, M. Aono, Mater. Res. Soc. Symp. Proc. 1562 (2013)

Download references

Acknowledgements

We would like to thank to our many collaborators, specially Y. Itoh, Q. Wang, H. Tanaka, S. Yamaguchi, S. Watanabe, H. Mizuta, I. Valov, and R. Waser. This research was supported in part by the Key-Technology Research Project from MEXT, CREST and the strategic Japanese-German Cooperative Program from JST, the WPI Research Center Initiative from MEXT, and a Grant-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant Number 24350278 and 24310107) from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Tsuruoka.

Electronic supplementary material

ESM 1

(DOCX 702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuruoka, T., Hasegawa, T., Terabe, K. et al. Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. J Electroceram 39, 143–156 (2017). https://doi.org/10.1007/s10832-016-0063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0063-9

Keywords

Navigation