Skip to main content
Log in

Dielectric properties and defect mechanisms of (1-x)Ba(Fe0.5Nb0.5)O3 -xBiYbO3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

(1-x)Ba(Fe0.5Nb0.5)O3 -xBiYbO3 (BFN-xBY) ceramics were prepared by a conventional solid-state reaction method. The dielectric properties and relaxation behavior of BFN-xBY ceramics were analyzed according to dielectric and impedance spectroscopy. Dielectric permittivity of the ceramics increases with increasing temperature below 500 K then remains unchanged up to 700 K, while corresponding loss factor decreases with the increase of temperature below 500 K then increase slowly. Defect compensation mechanism of this system was analyzed in detail. The giant dielectric behavior of the ceramics arises from the internal barrier layer capacitor (IBLC) effect. Polarization effect at insulating grain boundaries between semiconducting grains accompanied by a strong Maxwell-Wagner (MW) relaxation mode. The characteristic of grain boundaries was revealed using impedance spectroscope and the universal dielectric response law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  2. L. Liu, H. Fan, P. Fang, L. Jin, Electrical heterogeneity in CaCu3Ti4O12 ceramics fabricated by sol–gel method. Solid State Commun. 142, 573–576 (2007)

    Article  Google Scholar 

  3. L. Liu, H. Fan, P. Fang, X. Chen, Sol–gel derived CaCu3Ti4O12 ceramics: Synthesis, characterization and electrical properties. Mater. Res Bull 43, 1800–1807 (2008)

    Article  Google Scholar 

  4. Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, Effect of holding time on the dielectrical properties and non-ohmic behavior of CaCu3Ti4O12 capacitor-varistors. J. Mater. Sci-Mater Electro. 24, 1994–1999 (2013)

    Article  Google Scholar 

  5. Y. Huang, D. Shi, L. Liu, G. Li, S. Zheng, L. Fang, High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3. Appl. Phys. A Mater. Sci. Process. 114, 891–896 (2014)

    Article  Google Scholar 

  6. J. Wu, C. Nan, Y. Lin, Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 89, 217601 (2002)

    Article  Google Scholar 

  7. S. Saha, T. P. Sinha, Structural and dielectric studies of BaFe0.5Nb0.5O3. J. Phys-Condens Mat 14, 249–258 (2002)

    Article  Google Scholar 

  8. U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Impedance study of giant dielectric permittivity in BaFe0.5Nb0.5O3 perovskite ceramic. Curr. Appl. Phys. 10, 21–25 (2010)

    Article  Google Scholar 

  9. B. Fang, Z. Cheng, R. Sun, C. Ding, Preparation and electrical properties of (1 − x)Sr(Fe1/2Nb1/2)O3xPbTiO3 ferroelectric ceramics. J. Alloys Compds. 471, 539–543 (2009)

  10. I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya, L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb). J. Appl. Phys. 93, 4130–4136 (2003)

    Article  Google Scholar 

  11. C. Suman, K. Prasad, R. Choudhary, Impedance spectroscopic studies of ferroelectric Pb2Sb3DyTi5O18. Adv. Appl. Ceram. 104, 294–299 (2005)

    Article  Google Scholar 

  12. F. Gao, R. Hong, J. Liu, Z. Li, L. Cheng, C. Tian, Phase formation and characterization of high curie temperature xBiYbO3–(1 − x)PbTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 29, 1687–1693 (2009)

    Article  Google Scholar 

  13. L. Liu, H. Fan, L. Wang, X. Chen, P. Fang, Dc-bias-field-induced dielectric relaxation and AC conduction in CaCu3Ti4O12 ceramics. Philos. Mag. 88, 537–545 (2008)

    Article  Google Scholar 

  14. Y. Huang, L. Liu, D. Shi, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadi, Giant dielectric permittivity and non-linear electrical behavior in CaCu3Ti4O12 varistors from the molten-salt synthesized powder. Ceram. Int. 39, 6063–6068 (2013)

    Article  Google Scholar 

  15. Y. Li, L. Fang, L. Liu, Y. Huang, C. Hu, Giant dielectric response and charge compensation of Li-and Co-doped NiO ceramics. Mater. Sci. Eng. B 177, 673–677 (2012)

    Article  Google Scholar 

  16. P. Lunkenheimer, S. Krohns, S. Riegg, S. G. Ebbinghaus, A. Reller, A. Loidl, Colossal dielectric constants in transition-metal oxides. Eur. Phys J. Spec. TOP 180, 61–89 (2010)

    Article  Google Scholar 

  17. G. Li, Z. Chen, X. Sun, L. Liu, L. Fang, B. Elouadi, Electrical properties of AC3B4O12-type perovskite ceramics with different cation vacancies. Mater. Res. Bull. 65, 260–265 (2015)

    Article  Google Scholar 

  18. M. Pastor, Synthesis, structural, dielectric and electrical impedance study of Pb(Cu1/3Nb2/3)O3. J. Alloys Compds 463, 323–327 (2008)

    Article  Google Scholar 

  19. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A Mater. Sci. Process. 104, 1047–1051 (2011)

    Article  Google Scholar 

  20. L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater. Chem. Phys. 139, 844–850 (2013)

    Article  Google Scholar 

  21. D. C. Sinclair, A. R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)

    Article  Google Scholar 

  22. S. I. R. Costa, M. Li, J. R. Frade, D. C. Sinclair, Modulus spectroscopy of CaCu3Ti4O12 ceramics: clues to the internal barrier layer capacitance mechanism. RSC Adv. 3, 7030–7036 (2013)

    Article  Google Scholar 

  23. A. K. Jonscher, Dielectric relaxation in solids (London: Chelsea). J. Phys. D. Appl. Phys. 32, 57–70 (1999)

    Article  Google Scholar 

  24. A. K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  25. A. K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037–2060 (1981)

    Article  Google Scholar 

  26. L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, Y. Wang, Oxygen- vacancy- related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3–0.05BaZrO3 ceramic. Physica B 407, 136–139 (2012)

    Article  Google Scholar 

  27. C. C. Wang, S. X. Dou, Pseudo-relaxor behaviour induced by Maxwell-Wagner relaxation. Solid State Commun. 149, 2017–2020 (2009)

    Article  Google Scholar 

  28. G. Catalan, D. O. Neill, R. M. Bowman, J. M. Gregg, Maxwell-Wagner space charge effects on the Pb(Zr,Ti)O3-CoFe2O4 multilayers. Appl. Phys. Lett. 77, 3078 (2000)

    Article  Google Scholar 

  29. M. Li, A. Feteira, D. C. Sinclair, Relaxor ferroelectric-like high effective permittivity in leaky dielectrics/oxide semiconductors induced by electrode effects: a case study of CuO ceramics. J. Appl. Phys. 105, 114109 (2009)

    Article  Google Scholar 

  30. L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M. P. Thi, Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics. Mater. Chem. Phys. 117, 138–141 (2009)

    Article  Google Scholar 

  31. M. A. Rafiq, A. Tkach, M. E. Costa, P. M. Vilarinho, Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17, 24403 (2015)

    Article  Google Scholar 

  32. A. Chen, Y. Zhi, L. E. Cross, Oxygen-vacancy- related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3. Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  33. Q. Ke, X. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Phys. Rev. B 82, 024102 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos.11264010, 11564010, 51402196), the Natural Science Foundation of Guangxi (GA139008), Projects of Education Department of Guangxi (No.KY2015YB122) and the Open fund of GuangXi Key Laboratory of Building New Energy and Energy Conservation (No.15-J-21-13). and the China Postdoctoral Science Foundation (Grants 2014 M552229 and 2015 T80915).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biaolin Peng or Laijun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Sun, X., Peng, B. et al. Dielectric properties and defect mechanisms of (1-x)Ba(Fe0.5Nb0.5)O3 -xBiYbO3 ceramics. J Electroceram 37, 137–144 (2016). https://doi.org/10.1007/s10832-016-0047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0047-9

Keywords

Navigation