Skip to main content
Log in

Base metal Co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

A NaF-Nb2O5 flux doped (Na,K)NbO3 (NKN) based lead-free ceramic was successfully co-fired with nickel inner electrodes in reduced atmospheres. No chemical reactions and/or inter-diffusion were detected at the interface between the nickel (Ni) electrodes and the NKN-based piezoelectrics. Dielectric, resistivity, and electromechanical performance were measured with processing under different firing conditions and flux additions to obtain high densities. Ceramics are obtained with submicron grain structures with the NaF-Nb2O5 sintering aids (2 and 4 wt%) fluxes, and high densities when firing at low pO2 (10−10 atms) atmospheres at sintering temperatures ~1150 °C for 2 hours. High resistivities and low losses can be obtained through a second annealing condition at 850 °C and 10−7 atms at 8 hours. High d 33 values (over 350 pm/V) determined under unipolar converse electromechanical measurements were obtained in the simple prototyped co-fired structures to show feasibility towards base metal electrodes in multilayer actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Uchino, Piezoelectric actuator/ultrasonic motors (Kluwer Academic Publisher, Boston, 1996)

    Book  Google Scholar 

  2. C.A. Randall, A. Kelnberger, G.Y. Yang, R.E. Eitel, T.R. Shrout, J. Electroceram. 14, 177 (2005)

    Article  Google Scholar 

  3. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241 (1987)

    Article  Google Scholar 

  4. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  5. C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, I.M. Reaney, J. Appl. Phys. 95, 3633 (2004)

    Article  Google Scholar 

  6. S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randall, J. Appl. Phys. 98, 034108 (2005)

    Article  Google Scholar 

  7. C.A. Randall, R.E. Eitel, T.R. Shrout, D.I. Woodward, I.M. Reaney, J. Appl. Phys. 93, 9271 (2003)

    Article  Google Scholar 

  8. S. Zhang, C.A. Randall, T.R. Shrout, J. Appl. Phys. 95, 4291 (2004)

    Article  Google Scholar 

  9. S. Zhang, R. Xia, C.A. Randall, T.R. Shrout, R. Duan, R.F. Speyer, J. Mater. Res. 20, 2067 (2005)

    Article  Google Scholar 

  10. I. Grinberg, M.R. Suchomel, W. Dmowski, S.E. Mason, H. Wu, P.K. Davies, A.M. Rappe, Phys. Rev. Lett. 98, 107601 (2007)

    Article  Google Scholar 

  11. M.R. Suchomel, P.K. Davies, J. Appl. Phys. 96, 4405 (2004)

    Article  Google Scholar 

  12. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  Google Scholar 

  13. H. Nagata, T. Takenaka, J. Eur. Ceram. Soc. 21, 1299 (2001)

    Article  Google Scholar 

  14. G. Shirane, R. Newnham, R. Pepinsky, Phys. Rev. 96, 581 (1954)

    Article  Google Scholar 

  15. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  Google Scholar 

  16. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Honma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  17. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190 (2005)

    Article  Google Scholar 

  18. K. Kobayashi, Y. Doshida, Y. Mizuno, C.A. Randall, J. Am. Ceram. Soc. 95, 2928 (2012)

    Article  Google Scholar 

  19. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  20. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962)

    Article  Google Scholar 

  21. G.H. Haertling, J. Am. Ceram. Soc. 50, 329 (1967)

    Article  Google Scholar 

  22. K. Uchino, Acta Mater. 46, 3745 (1998)

    Article  Google Scholar 

  23. S. Kawada, M. Kimura, Y. Higuchi, H. Takagi, Appl. Phys. Express 2, 111401 (2009)

    Article  Google Scholar 

  24. C. Liu, P. Liu, K. Kobayashi, W. Qu, C.A. Randall, J. Am. Ceram. Soc. (2013). doi:10.1111/jace.12461

    Google Scholar 

  25. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009)

    Article  Google Scholar 

  26. C. Chiang, Y. Lee, F. Shiao, W. Lee, D. Hennings, J. Eur. Ceram. Soc. 32, 865 (2012)

    Article  Google Scholar 

  27. H. Saito, H. Chazono, H. Kishi, N. Yamaoka, Jpn. J. Appl. Phys. 30, 2307 (1991)

    Article  Google Scholar 

  28. D. Hennings, J. Eur. Ceram. Soc. 21, 1637 (2001)

    Article  Google Scholar 

  29. N.J. Donnelly, C.A. Randall, J. Appl. Phys. 109, 104107 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge technical assistance from Jeff Long, Steven Perini, and Amanda Baker at The Pennsylvania State University (Penn State). Cheng Liu also wishes to thank China Scholarship Council (CSC) for providing the opportunity to study as a visiting scientist at Penn State. Clive Randall also wishes to thank the Center for Dielectrics and Piezoelectrics (CDP) for support of the experimental costs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive A. Randall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Liu, P., Kobayashi, K. et al. Base metal Co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance. J Electroceram 32, 301–306 (2014). https://doi.org/10.1007/s10832-014-9899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9899-z

Keywords

Navigation