Skip to main content
Log in

Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Thick film two phase, 0–3 composite PZT-epoxy dome-shaped structures have been fabricated for the first time using a modified solvent and spin coating technique, where a PZT and ethanol solution was dispersed in an epoxy matrix, combined with a hardener, spin coated onto stainless steel sheets, and poled at ~2.2 kV/mm. The electro-mechanical performances of the films were investigated as a function of volume fraction of PZT. The volume fraction of PZT was varied from 0.1 to 0.7 and the piezoelectric coefficients d 31 and d 33 , and the capacitance, C, were measured, and used to calculate the effective dielectric constants. The values for d33, d31, C and dielectric constant were 1.06 pC/N, 0.74 pC/N, 6.0 pF and 76.1 respectively, at 70 % volume fraction of PZT. The surface topography and morphology were examined via AFM and SEM. The piezoelectric strain coefficients, capacitance and effective dielectric constant increased with increasing PZT content, in addition to the surface roughness. Agglomeration of PZT particles and surface crevices were observed on sample surfaces, which are most likely due to surface tension and air bubbles formed during the mixing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.C. Buchanan et al., High piezoelectric actuation response in graded Nd(2)O(3) and ZrO(2) doped BaTiO(3) structures. J. Electroceram. 26(1–4), 116–121 (2011)

    Article  CAS  Google Scholar 

  2. O. Delas et al., Optimizing the thickness of piezoceramic actuators for bending vibration of planar structures. J. Intell. Mater. Syst. Struct. 18(11), 1191–1201 (2007)

    Article  Google Scholar 

  3. G.H. Haertling, Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  CAS  Google Scholar 

  4. C.H. Nguyen, S. Pietrzko, R. Buetikofer, The influence of temperature and bonding thickness on the actuation of a cantilever beam by PZT patches. Smart Mater. Struct. 13(4), 851–860 (2004)

    Article  Google Scholar 

  5. A. Nisar et al., MEMS-based micropumps in drug delivery and biomedical applications. Sensors Actuators B-Chem. 130(2), 917–942 (2008)

    Article  CAS  Google Scholar 

  6. S. Choi, H. Lee, W. Moon, A micro-machined piezoelectric hydrophone with hydrostatically balanced air backing. Sensors Actuators a-Phys. 158(1), 60–71 (2010)

    Article  CAS  Google Scholar 

  7. H. Lee, S. Choi, W. Moon, A micro-machined piezoelectric flexural-mode hydrophone with air backing: Benefit of air backing for enhancing sensitivity. J. Acoust. Soc. Am. 128(3), 1033–1044 (2010)

    Article  Google Scholar 

  8. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Google Scholar 

  9. K.A. Cook-Chennault, N. Thambi, M.A. Bitetto, E.B. Hameyie, Piezoelectric energy harvesting: A green and clean alternative for sustained power production. Bull. Sci. Technol. Soc. 28, 496–509 (2008)

    Google Scholar 

  10. H.S. Yoon, G. Washington, A. Danak, Modeling, optimization, and design of efficient initially curved piezoceramic unimorphs for energy harvesting applications. J. Intell. Mater. Syst. Struct. 16(10), 877–888 (2005)

    Article  Google Scholar 

  11. F. Amirouche, Y. Zhou, T. Johnson, Current micropump technologies and their biomedical applications. Microsyst. Technol. Micro Nanosyst. -Inf. Storage Process. Syst. 15(5), 647–666 (2009)

    CAS  Google Scholar 

  12. M.M. Teymoori, E. Abbaspour-Sani, Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sensors Actuators a-Phys. 117(2), 222–229 (2005)

    Article  CAS  Google Scholar 

  13. M.S. Yoon et al., Compact size ultrasonic linear motor using a dome shaped piezoelectric actuator. J. Electroceram. 28(2–3), 123–131 (2012)

    Article  Google Scholar 

  14. J.P. Choi et al., Design and fabrication of synthetic air-jet micropump. Int. J. Precis. Eng. Manuf. 12(2), 355–360 (2011)

    Article  Google Scholar 

  15. K.Y. Kim et al., Performance evaluation of lightweight piezo-composite actuators. Sensors Actuators a-Phys. 120(1), 123–129 (2005)

    Article  CAS  Google Scholar 

  16. O. Bilgen, M.A. Karami, D.J. Inman, M.I. Friswell, The actuation characterization of cantilevered unimorph beams with single crystal piezoelectric materials. Smart Mater. Struct. 20(5), 055024 (2011)

    Google Scholar 

  17. O. Bilgen, Y. Wang, D.J. Inman, Electromechanical comparison of cantilevered beams with multifunctional piezoceramic devices. Mech. Syst. Sig. Process. 27, 763–777 (2012)

    Article  Google Scholar 

  18. Y. Man-Soon, H. Sung-Moo, U. Soon-Chul, A newly designed chopper for pyroelectric infrared sensor by using a dome-shaped piezoelectric linear motor (DSPLM). J.Electroceram. 23(2–4), 242–247 (2009)

    Article  Google Scholar 

  19. A. Furuta, K. Uchino, Dynamic observation of crack-propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76(6), 1615–1617 (1993)

    Article  CAS  Google Scholar 

  20. X.L. Chao et al., Fabrication, characteristics and temperature stability of Pb(Mg1/3Nb2/3)O-3-Pb(Sb1/3Nb2/3)O-3-Pb(Ni1/3Nb2/3)O-3-Pb(Zr, Ti)O-3 piezoelectric actuators. Sensors Actuators a-Phys. 151(1), 71–76 (2009)

    Article  CAS  Google Scholar 

  21. X.C. Chu et al., Vibration and fatigue of multilayer piezoelectric transformer. Rare Metal Mater. Eng. 38, 226–229 (2009)

    Google Scholar 

  22. J.H. Koh et al., Electric field induced fracture mechanism and aging of piezoelectric behavior in Pb(MgNb)O-3-Pb(ZrTi)O-3 multilayer ceramic actuators. Ceram. Int. 30(7), 1863–1867 (2004)

    Article  CAS  Google Scholar 

  23. J. Yoo, K. Kim, Y. Jeong, Electrical properties of low temperature sintering step-down multilayer piezoelectric transformer. Jpn. J. Appl. Phys. 2 Lett. Express Lett. 46(20–24), L486–L488 (2007)

    Article  CAS  Google Scholar 

  24. J. Yoo et al., Electrical properties of low temperature sintering multilayer piezoelectric transformer using Pb(Mn1/3Nb2/3)O-3-Pb(Zn1/3Nb2/3)O-3-Pb(Zr, Ti)O-3. Sensors Actuators a-Phys. 137(1), 81–85 (2007)

    Article  CAS  Google Scholar 

  25. U. Soon-Chul, Y. Man-Soon, H. Sung-Moo, A newly designed chopper for pyroelectric infrared sensor by using a dome-shaped piezoelectric linear motor (DSPLM). J. Electroceram. 23(2–4), 242–247 (2009)

    Article  Google Scholar 

  26. G.H. Feng, A piezoelectric dome-shaped-diaphragm transducer for microgenerator applications. Smart Mater. Struct. 16(6), 2636–2644 (2007)

    Article  Google Scholar 

  27. G.H. Feng, E.S. Kim, Piezoelectrically actuated dome-shaped diaphragm micropump. J. Microelectromech. Syst. 14(2), 192–199 (2005)

    Article  Google Scholar 

  28. G.H. Feng et al., Fabrication of MEMS ZnO domeshaped-diaphragm transducers for high-frequency ultrasonic imaging. J. Micromech. Microeng. 15(3), 586–590 (2005)

    Article  CAS  Google Scholar 

  29. C.H. Cheng, S.L. Tu, Fabrication of a novel piezoelectric actuator with high load-bearing capability. Sensors Actuators a-Phys. 141(1), 160–165 (2008)

    Article  CAS  Google Scholar 

  30. J. Peng, C. Chao, H. Tang, Piezoelectric micromachined ultrasonic transducer based on dome-shaped piezoelectric single layer. Microsyst. Technol. Micro Nanosyst. -Inf. Storage Process. Syst. 16(10), 1771–1775 (2010)

    Google Scholar 

  31. N.S. Goo, S.C. Woo, K.H. Park, Influences of dome height and stored elastic energy on the actuating performance of a plate-type piezoelectric composite actuator. Sensors Actuators a-Phys. 137(1), 110–119 (2007)

    Article  Google Scholar 

  32. S.B. Lang, G. Li, Rainbow ceramics: Processing techniques; Piezoelectric, dielectric and pyroelectric properties; and polarization distributions as determined with SLIMM. J. Korean Phys. Soc. 32, S1268–S1270 (1998)

    CAS  Google Scholar 

  33. X.P. Ruan et al., Design optimization of dome actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46(6), 1489–1496 (1999)

    Article  CAS  Google Scholar 

  34. P. Ngernchuklin, E.K. Akdogan, A. Safari, B. Jadidian, Electromechanical displacement of piezoelectric-electrostrictive monolithic bilayer composites. J. Appl. Phys. 105(3), 034102 (2009)

    Google Scholar 

  35. X. Shen, Preparation and structure of rainbow piezoelectric ceramics. J. Wuhan Univ. Technol. Mater. Sci. Ed. 18(4), 24–26 (2003)

    Article  CAS  Google Scholar 

  36. R.G. Bryant et al., The correlation of electrical properties of prestressed unimorphs as a function of mechanical strain and displacement. Integr. Ferroelectr. 71, 267–287 (2005)

    Article  CAS  Google Scholar 

  37. K.M. Mossi, G.V. Selby, R.G. Bryant, Thin-layer composite unimorph ferroelectric driver and sensor properties. Mater. Lett. 35(1–2), 39–49 (1998)

    Article  CAS  Google Scholar 

  38. K.J. Yoon et al., Design and manufacture of a lightweight piezo-composite curved actuator. Smart Mater. Struct. 11(1), 163–168 (2002)

    Article  CAS  Google Scholar 

  39. N.S. Goo et al., Validation of a laminated beam model of LIPCA piezoelectric actuators. J. Intell. Mater. Syst. Struct. 16(3), 189–195 (2005)

    Article  Google Scholar 

  40. N.S. Goo et al., Behaviors and performance evaluation of a lightweight piezo-composite curved actuator. J. Intell. Mater. Syst. Struct. 12(9), 639–646 (2001)

    Article  CAS  Google Scholar 

  41. A. Haris et al., Modeling and analysis for the development of Lightweight Piezoceramic Composite Actuators (LIPCA). Comput. Mater. Sci. 30(3–4), 474–481 (2004)

    Article  Google Scholar 

  42. C.W. Kim, K.J. Yoon, Fatigue behavior degradation due to the interlaminar conditions in Lightweight Piezoelectric Composite Actuator (LIPCA). Int. J. Mod. Phys. B 20(25–27), 4365–4370 (2006)

    Article  CAS  Google Scholar 

  43. G. Lee et al., Modeling and design of h-infinity controller for piezoelectric actuator LIPCA. J. Bionic Eng. 7(2), 168–174 (2010)

    Article  Google Scholar 

  44. K.J. Yoon et al., Actuator performance degradation of Piezo-Composite Actuator LIPCA under cyclic actuation, in Advances in Fracture and Failure Prevention, Pts 1 and 2, ed. by K. Kishimoto (2004), p. 1331–1336.

  45. K.J. Yoon et al., Thermal deformation analysis of curved actuator LIPCA with a piezoelectric ceramic layer and fiber composite layers. Compos. Sci. Technol. 63(3–4), 501–506 (2003)

    Article  Google Scholar 

  46. C.Y. Li et al., Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromech. Syst. 17(2), 334–341 (2008)

    Article  CAS  Google Scholar 

  47. E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(5), 746–775 (2005)

    Article  Google Scholar 

  48. E. Venkatragavaraj et al., Piezoelectric properties of ferroelectric PZT-polymer composites. J. Phys. D Appl. Phys. 34(4), 487–492 (2001)

    Article  CAS  Google Scholar 

  49. T. Furukawa, K. Fujino, E. Fukada, Electromechanical properties in the composites of epoxy resin and PZT ceramics. Jpn. J. Appl. Phys. 15(11), 2119–2129 (1976)

    Article  CAS  Google Scholar 

  50. A. Seema, K.R. Dayas, J.M. Varghese, PVDF-PZT-5H composites prepared by hot press and tape casting techniques. J. Appl. Polym. Sci. 106(1), 146–151 (2007)

    Article  CAS  Google Scholar 

  51. B. Satish, K. Sridevi, M.S. Vijaya, Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D Appl. Phys. 35(16), 2048–2050 (2002)

    Article  CAS  Google Scholar 

  52. T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53(6), 4328–4332 (1982)

    Article  CAS  Google Scholar 

  53. W. Nhuapeng, T. Tunkasiri, Properties of 0–3 lead zirconate titanate-polymer composites prepared in a centrifuge. J. Am. Ceram. Soc. 85(3), 700–702 (2002)

    Article  CAS  Google Scholar 

  54. M. Dietze, M. Es-Souni, Structural and functional properties of screen-printed PZT-PVDF-TrFE composites. Sensors Actuators a-Phys. 143(2), 329–334 (2008)

    Article  CAS  Google Scholar 

  55. A. Es-Souni et al., Pyroelectric and piezoelectric properties of thick PZT films produced by a new sol–gel route. J. Eur. Ceram. Soc. 25(12), 2499–2503 (2005)

    Article  CAS  Google Scholar 

  56. K. Arlt, M. Wegener, Piezoelectric PZT/PVDF-copolymer 0–3 composites: Aspects on film preparation and electrical poling. IEEE Trans. Dielectr. Electr. Insul. 17(4), 1178–1184 (2010)

    Article  CAS  Google Scholar 

  57. M. Wegener, K. Arlt, PZT/P(VDF-HFP) 0–3 composites as solvent-cast thin films: preparation, structure and piezoelectric properties. J. Phys. D Appl. Phys. 41(16), 165409 (2008)

    Google Scholar 

  58. Y.T. Or et al., Modeling of poling, piezoelectric, and pyroelectric properties of ferroelectric 0–3 composites. J. Appl. Phys. 94(5), 3319–3325 (2003)

    Article  CAS  Google Scholar 

  59. D.A. van den Ende, W.A. Groen, S. van der Zwaag, The effect of calcining temperature on the properties of 0–3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer. J. Electroceram. 27(1), 13–19 (2011)

    Article  CAS  Google Scholar 

  60. J.P. de la Cruz, Piezoelectric Thick Films: Preparation and Characterization, in Microelectromechanical Systems and Devices, ed by N. Islam (InTech, 2012), pp. 351–368

  61. A. Safari et al., Piezoelectric and Acoustic Materials for Transducer Applications (Springer, New York, 2008)

    Book  Google Scholar 

  62. M. Dietze, J. Krause, C.-H. Solterbeck, M. Es-Souni, Thick film polymer-ceramic composites for pyroelectric applications. J. Appl. Phys. 101(5), 054113 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Cook-Chennault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Du, W., Wang, L. et al. Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J Electroceram 31, 148–158 (2013). https://doi.org/10.1007/s10832-013-9834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9834-8

Keywords

Navigation