Skip to main content
Log in

The equivalent circuits for polaronic relaxation: Taking the LaNi3/4Mo1/4O3 as a model sample

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

We herein discuss the equivalent circuits for polaronic relaxation based on the results of the low-temperature dielectric properties of LaNi3/4Mo1/4O3. The ceramic samples were prepared via solid-state reaction route. The dielectric properties were investigated in the temperature range from 103 K to 330 K and the frequency range from 20 Hz to 10 MHz. Our results showed that the Debye-like relaxation found in the sample was related to be a polaronic relaxation caused by localized carriers. At low enough temperatures below 103 K, the carriers were strictly confined and the equivalent circuit for impedance spectra was an ideal capacitor. At the temperatures around room temperature, the carriers can hop between spatially fluctuating lattice potentials, the circuit of R − CPE (R = resistance, CPE = constant phase element) was found to be the better model to describe the impedance data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.E. Bauerle, J. Phys. Chem. Solid 30, 2657 (1969)

    Article  CAS  Google Scholar 

  2. M.A.L. Nobre, S. Lanfredi, J. Phys. Condens. Matter 12, 7833 (2000)

    Article  CAS  Google Scholar 

  3. A. Dutta, T.P. Sinha, J. Alloys Compd. 509, 1705 (2011)

    Article  CAS  Google Scholar 

  4. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  CAS  Google Scholar 

  5. S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86, 2215 (1999)

    Article  CAS  Google Scholar 

  6. C.C. Wang, L.W. Zhang, Phys. Rev. B 74, 024106 (2006)

    Article  Google Scholar 

  7. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R 57 (1999)

    Article  CAS  Google Scholar 

  8. A.S. Nowick, A.V. Vaysleyb, I. Kuskovsky, Phys. Rev. B 58, 28398 (1998)

    Article  Google Scholar 

  9. O. Bidault, M. Maglione, M. Actis, M. Kchikech, B. Salce, Phys. Rev. B 52, 4191 (1995)

    Article  CAS  Google Scholar 

  10. J. Miao, X.G. Xu, Y. Jiang, L.X. Cao, B.R. Zhao, Appl. Phys. Lett. 95, 132905 (2009)

    Article  Google Scholar 

  11. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  12. W. Li, R.W. Schwartz, Appl. Phys. Lett. 89, 242906 (2006)

    Article  Google Scholar 

  13. R. Gerhardt, J. Phys. Chem. Solid 55, 1491 (1994)

    Article  CAS  Google Scholar 

  14. Q.C. Wang, R. Gerhardt, Solid State Ionics 42, 213 (1990)

    Article  Google Scholar 

  15. N. Biskup, A. Andres, J.L. Martinez, Phys. Rev. B 72, 024115 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been subsidized by the National Natural Science Foundation of China (Grant no. 11074001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunchang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Wang, C., Sun, X. et al. The equivalent circuits for polaronic relaxation: Taking the LaNi3/4Mo1/4O3 as a model sample. J Electroceram 31, 75–80 (2013). https://doi.org/10.1007/s10832-013-9804-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9804-1

Keywords

Navigation